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Preface

We are delighted to introduce the fifth edition of this book, which was first
published in 1965 and has been in press continuously since then. In the
Preface to the first edition it was noted that “Although many aspects of the
application of dislocation ideas are still in a state of flux a body of knowledge, based
on theoretical analysis and experimental observation, has now been established
which forms a basis for most of the ideas and theories which are proposed”. Today
the subject is a well-established discipline and is a powerful and essential
aspect in understanding of the properties and behavior of crystalline solids.

Much of the basis of the subject, set out in relatively simple terms in the first
edition, has been retained in later editions. In each subsequent edition new
material has been included to broaden the detail and introduce some key
aspects, which have emerged from research, without turning the book into a
research monograph. In this latest edition we have taken advantage of recent
research, using advanced computer modeling and very high resolution elec-
tron microscopy, to provide a better understanding of the arrangement of
atoms close to the centre or core of dislocations. It is now clear that the
atomic arrangement in the core has a fundamental effect on the behavior of
dislocations and thereby on the properties of solids.

The development of this edition has benefited from a worldwide consulta-
tion, by the publishers, with leading authorities in the teaching and research-
ing of dislocations. This consultation established that the fourth edition is
still widely used in undergraduate and post-graduate university science and
engineering courses and research schools. In preparing the fifth edition we
have attempted to maintain a balance between a description of the basic
properties of dislocations that are taught in introductory undergraduate
courses and a more detailed treatment that is required for scientific research.

This distinction depends on the nature of courses and research although we
have not attempted to make any delineation within the body of the text.
Thus, for example, in Chapter 2, on the observation of dislocations, the sim-
ple methods, first developed in early studies, are set alongside the
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sophisticated approaches now available to specialists who have access to
powerful analytical and experimental techniques, such as high resolution
microscopy and codes that exploit the power of current computer systems to
simulate dislocations at atomic and continuum scales.

A similar distinction has been made in the selection of further reading lists
at the end of each chapter. We have included references to some of the influ-
ential papers from the early days of ‘dislocations’ as well as more recent
papers that offer access to frontier research studies and provide an insight
into the research now conducted in this field.

We are greatly indebted to friends and colleagues in many different countries
who have allowed us access to their work and readily offered help and
advice. We are also grateful to our publishers for encouraging us to prepare
this new edition and agreeing to produce it in a completely new format.

Liverpool, August 2010 Derek Hull
David Bacon

www.lran-mavad.com
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CHAPTER 1

Defects in Crystals

1.1 CRYSTALLINE MATERIALS

Dislocations are an important class of defect in crystalline solids and so an
elementary understanding of crystallinity is required before dislocations can be
introduced. Metals and many important classes of non-metallic solids are crys-
talline, i.e. the constituent atoms are arranged in a pattern that repeats itself peri-
odically in three dimensions. The actual arrangement of the atoms is described
by the crystal structure. The crystal structures of most pure metals are relatively
simple: the three most common are the body-centered cubic, face-centered cubic
and close-packed hexagonal, and are described in section 1.2. In contrast, the
structures of alloys and non-metallic compounds are often complex.

The arrangement of atoms in a crystal can be described with respect to a
three-dimensional net formed by three sets of straight, parallel lines as in
Fig. 1.1(a). The lines divide space into equal sized parallelepipeds and the
points at the intersection of the lines define a space lattice. Every point of a
space lattice has identical surroundings. Each parallelepiped is called a unit
cell and the crystal is constructed by stacking identical unit cells face to face in
perfect alignment in three dimensions. By placing a motif unit of one or more
atoms at every lattice site the regular structure of a perfect crystal is obtained.

The positions of the planes, directions and point sites in a lattice are described
by reference to the unit cell and the three principal axes, x, y and z (Fig. 1.1
(b)). The cell dimensions OA =4, OB=0b and OC =c¢ are the lattice para-
meters, and these along with the angles /BOC=«, /LCOA=( and
L AOB =~ completely define the size and shape of the cell. For simplicity
the discussion here will be restricted to cubic and hexagonal crystal struc-
tures. In cubic crystals a=b=c¢ and o= (=+=90° and the definition of
planes and directions is straightforward. In hexagonal crystals it is conve-
nient to use a different approach, and this is described in section 1.2.

Any plane A’'B'C’ in Fig. 1.2 can be defined by the intercepts OA’, OB’ and
OC'’ with the three principal axes. The usual notation (Miller indices) is to 1

Introduction to Dislocations. www.lran-mavad.com
© 2011 D. Hull and D. J. Bacon. Published by Elsevier Ltd. All rights reserved.
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n CHAPTER 1: Defects in Crystals
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FIGURE 1.1
(a) A space lattice, (b) unit cell showing positions of principal axes.

A

FIGURE 1.2

Cubic cell illustrating
method of describing the
orientation of planes.

or (110); a plane DEGA

is

take the reciprocals of the ratios of the inter-
cepts to the corresponding unit cell dimen-
sions. Thus A'B'C’ is represented by

OA OB OC
OA’” OB’ OC'

and the numbers are then reduced to the three
smallest integers in these ratios.

Thus from Fig. 1.2 OA’=2a, OB’ =3a, and

OC' = 3a, the reciprocal intercepts are
a a a

Ga3a30)
and so the Miller indices of the A’B'C’ plane

are (322). Curved brackets are used for planes.
A plane with intercepts OA, OB, and OC has

Miller indices

(Ll a a)
-, =,
a a a

or, more simply, (111). Similarly, a plane DFBA in Fig. 1.3 is

(a a a>
- —,—
a a oo

(a a a)
a’ oo’ ©

www.lran-mavad.com
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1.1 Crystalline Materials -

or (100); and a plane AB'C’ in Fig. 1.2 is c E

(u a a) SH T
-, ezl
a 3a 3a - N

or (311). In determining the indices of any plane it is most
convenient to identify the plane of lattice points parallel to
the plane which is closest to the origin O and intersects the M

principal axis close to the origin. Thus plane A"B'C' in o) / B

Fig. 1.2 is parallel to ABC and it is clear that the indices are
(111). Using this approach it will be seen that the planes L
ABC, ABE, CEA and CEB in Fig. 1.3 are (111), (111), (111) 4 G
and (111) respectively. The minus sign above an index indi-

cates that the plane cuts the axis on the negative side of the

origin. In a cubic crystal structure, these planes constitute a group of the
same crystallographic type and are described collectively by {111}.

FIGURE 1.3

Cubic cell illustrating the
method of describing
directions and point sites.
Any direction LM in Fig. 1.3 is described by the line parallel to LM through [Mis parallel to OF.
the origin O, in this case OE. The direction is given by the three smallest

integers in the ratios of the lengths of the projections of OE resolved along

the three principal axes, namely OA, OB and OC, to the corresponding lat-

tice parameters of the unit cell. Thus, if the cubic unit cell is given by OA,

OB and OC the direction LM is

04 0B OC
OA’ OB’ OC

or

299
a’a’a

or [111]. Square brackets are used for directions. The directions CG, AF, DB
and EO are [111], [111], [111] and [111] respectively and are a group of

directions of the same crystallographic type described collectively by (111).
Similarly, direction CE is

aaO
a’a’ a
or [110]; direction AG is
OaO
a’a’a
or [010]; and direction GH is
—a/2 —a/2 a
a ' a ’a

www.lran-mavad.com
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‘ CHAPTER 1: Defects in Crystals

FIGURE 1.4

Simple cubic structure: (a)
unit cell, (b) arrangement
of atoms in (100) layers,
(c) arrangement of atoms
in (110) layers.

[001]

or [112]. The rule that brackets [ | and ( ) imply specific directions and
planes respectively, and that ( ) and { } refer respectively to directions and
planes of the same type, will be used throughout this text.

In cubic crystals the Miller indices of a plane are the same as the indices of
the direction normal to that plane. Thus in Fig. 1.3 the indices of the plane
EFBG are (010) and the indices of the direction AG which is normal to
EFBG are [010]. Similarly, direction OE [111] is normal to plane CBA (111).

The coordinates of any point in a crystal relative to a chosen origin site are
described by the fractional displacements of the point along the three princi-
pal axes divided by the corresponding lattice parameters of the unit cell. The
center of the cell in Fig. 1.3 is 4, 1, 1 relative to the origin O; and the points
F,E,HandIare0,1,1;1,1,1;3 3 1;and 1, J, 1 respectively.

1.2 SIMPLE CRYSTAL STRUCTURES

In this section the atoms are considered as hard spheres

which vary in size from element to element. From the

hard sphere model the parameters of the unit cell can

be described directly in terms of the radius of the

atomic sphere, r. In the diagrams illustrating the crystal

structures the atoms are shown as small circles in the
[010] three-dimensional drawings and as large circles repre-
senting the full hard sphere sizes in the two-dimensional
diagrams. It will be shown that crystal structures can be
described as a stack of lattice planes in which the
arrangement of lattice sites within each layer is identical.
To see this clearly in two-dimensional figures, the atoms
in one layer represented by the plane of the paper are
shown as full circles, whereas those in layers above and
below the first are shown as small shaded circles. The
order or sequence of the atom layers in the stack, i.e. the
stacking sequence, is described by labeling one layer as an
A layer and all other layers with atoms in identical posi-
tions above the first as A layers also. Layers of atoms in
other positions in the stack are referred to as B, C, D
— [110] layers, etc.

In the simple cubic structure with one atom at each lattice
site, illustrated in Fig. 1.4, the atoms are situated at the
corners of the unit cell. (Note that no real crystals have
such a simple atomic arrangement.) Figures 1.4(b) and
(c) show the arrangements of atoms in the (100) and

www.lran-mavad.com
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1.2 Simple Crystal Structures -

(110) planes respectively. The
atoms touch along (001) direc-
tions and therefore the lattice
parameter a is twice the atomic
radius r (a =2r). The atoms in

adjacent (100) planes are in a

identical atomic sites when pro-

jected along the direction nor- (@) (b)
mal to this plane, so that the

stacking sequence of (100) FIGURE 15

planes is AAA... The atoms in
adjacent (110) planes are dis-
placed 1 av/2 along [110] rela-
tive to each other and the

[001]

— [110]

Body-centered cubic structures: (a) unit cell, (b) arrangement of atoms in (110) layers.

[001]

spacing of atoms along [110] is
av/2. Tt follows that alternate
planes have atoms in the same
atomic sites relative to the
direction normal to (110) and

[
r m

the stacking sequence of (110)
planes is ABABAB... The spac-
ing between successive (110)
planes is 1 av/2.

In the body-centered cubic struc-

ture (bcc), which is exhibited
by many metals and is shown
in Fig. 1.5, the atoms are situ-
ated at the corners of the unit
cell and at the centre site 4, 1, 3. The atoms touch along a (111) direction and
this is referred to as the close-packed direction. The lattice parameter
a=4r//3 and the spacing of atoms along (110) directions is a+/2. The
stacking sequence of {100} and {110} planes is ABABAB... (Fig. 1.5(b)).
There is particular interest in the stacking of {112} type planes (see sections
6.3 and 9.7). Figure 1.6 shows two body-centered cubic cells and the posi-
tions of a set of (112) planes. From the diagrams it is seen that the stacking
sequence of these planes is ABCDEFAB... , and the spacing between the

planes is a/+/6.

In the face-centered cubic structure (fcc), which is also common among the
metals and is shown in Fig. 1.7, the atoms are situated at the corners of the
unit cell and at the centers of all the cube faces in sites of the type 0, %, %
The atoms touch along the (011) close-packed directions. The lattice parame-
ter a=4r/+/2. The stacking sequence of {100} and {110} planes is

www.lran-mavad.com
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FIGURE 1.6

Stacking sequence of {112}
planes in a body-centered
cubic crystal. (a) Two unit
cells showing positions of
atoms in (112) planes. (b)
Traces of the (112)
planes on a (110)
projection: atom sites
marked by circles lie in the
plane of the diagram; those
marked by squares lie
a/~/2 above and below.
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FIGURE 1.7
Face-centered cubic structure: (a) unit cell, (b) principal directions, (c) arrangement of atoms in a (111)
close-packed plane, (d) stacking sequence of {111} planes.

ABABAB. .. , and the stacking sequence of {111} planes is ABCABC... The
latter is of considerable importance (see Chapter 5) and is illustrated in Figs
1.7(c) and (d). The atoms in the {111} planes are in the most close-packed
arrangement possible for spheres and contain three (110) close-packed direc-
tions 60° apart, as in Fig. 1.7(b).

The close-packed hexagonal structure (cph or hcp) is also common in metals. It
is more complex than the cubic structures but can be described very simply
with reference to the stacking sequence. The unit cell with lattice parameters
a, a, ¢ is shown in Fig. 1.8(a), together with the hexagonal cell constructed
from three unit cells. There are two atoms per lattice site, i.e. at 0, 0, 0 and
2,13 with respect to the axes a;, a5, ¢. The atomic planes perpendicular to
the ¢ axis are close-packed, as in the fcc case, but the stacking sequence is
now ABABAB. . ., as shown in Fig. 1.8(b).

For a hard sphere model the ratio of the length of the ¢ and a axes (axial
ratio) of the hexagonal structure is 1.633. In practice, the axial ratio varies
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1.2 Simple Crystal Structures

= SR
| A

(b) @ s

FIGURE 1.8
Close-packed hexagonal structure: (a) the unit cell of the lattice and the hexagonal cell showing the
arrangement of atoms, (b) ABAB. . . stacking sequence of the atomic planes perpendicular to the ¢ axis.

between 1.57 and 1.89 in close-packed hexagonal metals. The variations
arise because the hard sphere model gives only an approximate value of the
interatomic distances and requires modification depending on the electronic
structure of the atoms.

If Miller indices of three numbers based on axes a;, a,, ¢ are used to define
planes and directions in the hexagonal structure, it is found that crystallo-
graphically equivalent sets can have combinations of different numbers. For
example, the three close-packed directions in the basal plane (001) are
[100], [010] and [110]. Indexing in hexagonal crystals is therefore usually
based on Miller-Bravais indices, which are referred to the four axes a;, d,, as
and c¢ indicated in Fig. 1.8(a). When the reciprocal intercepts of a plane on
all four axes are found and reduced to the smallest integers, the indices are
of the type (h, k, i, 1), and the first three indices are related by

i=—(h+k) (1.1)
www.lran-mavad.com
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\a3 =[1120]

Equivalent planes are obtained by interchanging the

2 position and sign of the first three indices. A number

Y

of planes in the hexagonal lattice have been given spe-

a, =[2110]

FIGURE 1.9
Determination of direction
indices in the basal plane
of an hexagonal crystal.
The translations giving rise
to [1210] are shown
explicitly.

1 cific names. For example:
a4, = [1210] Ba.sal plane (090 1) B
Prism plane : first order (1100) (1100), etc.
Prism plane : second order (1120) (2110), etc.

Pyramidal plane : first order (1011) (1011),etc.
Pyramidal plane : second order (1122) (1 122),etc.

Some of these planes are indicated in Fig. 6.1. Direction indices in hexagonal
structures are defined by the components of the direction parallel to the four
axes. The numbers must be reduced to the smallest integers and the third
index is the negative of the sum of the first two. To satisfy this condition the
directions along axes a,, d, and as are of the type (1210) as illustrated in
Fig. 1.9.

1.3 DEFECTS IN CRYSTALLINE MATERIALS

All real crystals contain imperfections which may be point, line, surface or vol-
ume defects, and which disturb locally the regular arrangement of the atoms.
Their presence can significantly modify the properties of crystalline solids,
and although this text is primarily concerned with the line defects called dis-
locations, it will be seen that the behavior and effects of all these imperfec-
tions are intimately related.

Point Defects

All the atoms in a perfect crystal are at specific atomic sites (ignoring thermal
vibrations). In a pure metal two types of point defect are possible, namely a
vacant atomic site or vacancy, and a self-interstitial atom. These intrinsic defects
are illustrated for a simple cubic structure in Fig. 1.10. The vacancy has been
formed by the removal of an atom from an atomic site (labeled v) and the
interstitial by the introduction of an atom into a non-lattice site at a 1,1, 0
position (labeled i). It is known that vacancies and interstitials can be pro-
duced in materials by plastic deformation and high-energy particle irradia-
tion. The latter process is particularly important in materials in nuclear
reactor installations. Furthermore, intrinsic point defects are introduced
into crystals simply by virtue of temperature, for at all temperatures above
0K there is a thermodynamically stable concentration. The change in
Helmholtz free energy AF associated with the introduction of n vacancies or
self-interstitials in the crystal is

www.lran-mavad.com

dlgo guwnrigo g Ghgauisih gajo
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where Ey is the energy of formation of one defect
and AS is the change in the entropy of the crystal.
nEy represents a considerable positive energy, but
this is offset by an increase in the configurational
entropy due to the presence of the defects. The
equilibrium concentration of defects, given by the
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FIGURE 1.10
where k is Boltzmann's constant and T is the temperature (in deg K). () Vacancy, (b) self-

interstitial atom in an (001)
plane of a simple cubic
crystal.

For the vacancy, the formation energy, E}’, is that required to remove one atom
from its lattice site to a place on the surface of the crystal. Experimental values
fall in the range ~1—3 eV, i.e. 0.16—0.48 aJ. They scale with the melting tem-
perature, T;,, and an approximate rule is Ef ~8kT,,. Thus for copper, for which
T,,= 1356 K and E; = 1.3¢V, the fraction of atom sites vacant at 1300 K is
~107> and at 300 K is ~10~%2. The formation energy of the self-interstitial is
the energy required to remove one atom from the surface and insert it into an
interstitial site, and E} is typically two to four times E}’ Consequently, the con-
centration given by equation (1.3) is many orders of magnitude smaller for
interstitials, and so in metals in thermal equilibrium the concentration of inter-
stitials may be neglected in comparison with that of vacancies. In non-metals,
ionic charge and valence effects may modify this conclusion.

The rate at which a point defect moves from site to site in the crystal is pro-
portional to exp(—E,,/kT), where E,, is the defect migration energy and is typi-
cally ~0.1-1.0 eV. The rate decreases exponentially with decreasing
temperature and consequently in many metals it is possible to retain a high
vacancy concentration at room temperature by rapidly quenching from a
high equilibrating temperature.

Impurity atoms in a crystal can be considered as extrinsic point defects and they
play an important role in the physical and mechanical properties of all materi-
als. Impurity atoms can take up two different types of site, as illustrated in
Fig. 1.11: (a) substitutional, in which an atom of the parent lattice is replaced by
the impurity atom, and (b) interstitial, in which the impurity atom is at a non-
lattice site similar to the self-interstitial atoms referred to above.

All the point defects mentioned produce a local distortion in the otherwise
perfect crystal. The amount of distortion and hence the amount of additional
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CHAPTER 1: Defects in Crystals

energy in the crystal due to the defects depends
Q Q Q @ Q Q @ Q on the amount of ‘space’ between the atoms
Q Q @ Q Q Q and the ‘size’ of the atoms introduced.

The interstice sites between atoms generally
Q QOQ @ O have volumes of less than one atomic volume,

and the interstitial atoms therefore tend to pro-
@ O Q @ O O O Q duce large distortions among the surrounding

atoms. This accounts for the relatively large
Q Q @ Q Q Q Q Q values of E]E referred to above for the self-

interstitial, and can result in crystal volume

(@ (b)

FIGURE 1.11

increases as large as several atomic volumes per
interstitial atom.

(a) Substitutional impurity atom, (b) interstitial impurity atom. Additional effects are important when the

removal or addition of atoms changes the local
electric charge in the crystal. This is relatively

unimportant in crystals with metallic binding,
but can be demonstrated particularly well in
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FIGURE 1.12

Sodium chloride structure
which consists of two
interpenetrating face-
centered cubic lattices of
the two types of atom, with
the corner of one located
at the point 4, 0, 0 of the
other.

‘/\ crystals in which the binding is ionic. The

D) structure of sodium chloride is shown in
i Fig. 1.12. Each negatively charged chlorine ion

is surrounded by six nearest neighbors of posi-

@ Sodium ion

tively charged sodium ions and vice versa. The

O Chlorine ion removal of a sodium or a chlorine ion pro-
duces a local negative or positive charge as well
(% as a vacant lattice site. These are called cation

and anion vacancies respectively. To conserve
an overall neutral charge the vacancies must occur either (a) in pairs of
opposite sign, forming divacancies known as Schottky defects, or (b) in associ-
ation with interstitials of the same ion, Frenkel defects.

Stacking Faults

In section 1.2 it was emphasized that perfect crystals can be described as a
stack of atom layers arranged in a regular sequence. For the simple metallic
structures discussed in section 1.2, the atomic layers are identical. A stacking
fault is a planar defect and, as its name implies, it is a local region in the crys-
tal where the regular stacking sequence is interrupted. Stacking faults are
not expected in planes with ABABAB. .. sequences in body-centered or face-
centered cubic metals because there is no alternative site for an A layer rest-
ing on a B layer. However, for ABCABC... or ABABAB... stacking of the
close-packed planes in close-packed structures there are two possible posi-
tions of one layer resting on another (Fig. 1.7). According to the hard sphere
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FIGURE 1.13

Stacking faults in the face-centered cubic structure. The normal stacking sequence of (111) planes is
denoted by ABCA. . . Planes in normal relation to one another are separated by A, those with a
stacking error by V: (a) intrinsic stacking fault, (b) extrinsic stacking fault.

model, a close-packed layer of atoms resting on an A layer can rest equally
well in either a B or a C position and geometrically there is no reason for
the selection of a particular position. In a face-centered cubic lattice two
types of stacking fault are possible, referred to as intrinsic and extrinsic. These
are best described by considering the change in sequence resulting from the
removal or introduction of an extra layer. In Fig. 1.13(a) part of a C layer
has been removed; this results in a break in the stacking sequence. This is an
intrinsic fault and it can be seen that the stacking sequences above and below
the fault plane are continuous right up to the fault itself. In Fig. 1.13(b) an
extra A layer has been introduced between a B and a C layer. There are two
breaks in the stacking sequence and it is referred to as an extrinsic fault. The
extra layer does not belong to the continuing patterns of the lattice either
above or below the fault.

The presence of stacking faults can play an important role in the plasticity of
crystals. It should be noted, for example, that the intrinsic fault in the face-
centered cubic structure can be produced by a sliding process. If, say, an
A layer is slid into a B position and all the layers above are moved in the
same way, i.e. Bto C, C to A, A to B, etc., then the sequence ABCABCA...
becomes ABCBCAB..., which is identical to that discussed above. This
aspect will be discussed in more detail in Chapter 5.

Stacking faults have been reported in many crystal structures. (Those which
occur in the close-packed hexagonal metals are described in Chapter 6.)
They destroy the perfection of the host crystal, and the associated energy per
unit area of fault is known as the stacking-fault energy. Typical values lie in
the range 1—1000 mJ/m’. In the faults described above, the first- and
second-nearest-neighbor atomic bonds in the close-packed structure are pre-
served, so that only bonds to more-distant neighbors and electronic effects
contribute to the energy. In other structures, covalent bonding and ionic
effects can be important.
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m CHAPTER 1: Defects in Crystals

Grain Boundaries

Crystalline solids usually consist of a large
number of randomly oriented grains sepa-
rated by grain boundaries. Fach grain is a
single crystal and contains the defects
already described. When the misorienta-
tion between the grains is large, the
atomic arrangement at the boundary is
complicated and varies significantly with
the angle of misorientation. An easy way
to visualize the atomic arrangement is to
use bubble models (Fig. 1.14) in which a
two-dimensional raft of equal sized bub-
bles floats on the surface of a liquid.
Figure 1.14 shows a grain or ‘crystal’ sur-
rounded by grains of different orienta-
tion. A notable feature of the boundary
structure is that the region of disorder is
very narrow, being limited to one or two
‘atoms’ on each side of the boundary. For
FIGURE 1.14 certain  misorientation  relationships
Crystal grains simulated by a bubble raft. (From Scientific American, between grains, ~the .structure of the
Sept. 1967 boundary can be described as an array of
dislocations, as discussed in Chapter 9.

Twin Boundaries

Deformation twinning is a process in which a region of a
) ] ] ] ] ] crystal undergoes a homogeneous shear that produces the
[SHTC SR (Y. SRS SR | original crystal structure in a new orientation. In the sim-
’ ’ ’ ’ S plest cases, this results in the atoms of the original crystal
(‘parent’) and those of the product crystal (‘twin’) being

FIGURE 1.15 mirror images of each other by reflection in a composition
Arrangement of atoms in a plane, as illustrated in Fig. 1.15. The open circles represent
twin related structure; x—y  the positions of the atoms before twinning and the black circles the posi-
is the trace of the twin tions after twinning. The atoms above x—y are mirror images of the atoms
composition plane. below and therefore x—y represents the trace of the twin composition plane

in the plane of the paper. The homogeneous shear of the lattice parallel to
the composition plane is denoted by arrows. Deformation twinning can be
induced by plastic deformation and is particularly important in body-centered
cubic and close-packed hexagonal metals and many non-metallic crystals
(Chapter 6). When a growing twin meets a flat surface it produces a well-
defined tilt, and this can readily be detected in an optical microscope.
Figure 1.16 shows the tilts produced by deformation twins in a 3.25 per cent
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silicon iron crystal deformed at 20 K. Although
the twinning process differs from slip
(Chapter 3), in which there is no rotation of the

lattice, the sequential shear of atoms in planes

parallel to the composition plane (Fig. 1.15)

occurs by the movement of twinning disloca-

tions (Chapter 9). :
N

\

Volume Defects

Crystal defects such as precipitates, voids and
bubbles can occur under certain circumstances
and have important effects on the properties of
crystalline solids. As an example, it will be seen
in Chapter 10 how the interaction of disloca-
tions with precipitates has played a vital role in
the development of high-strength alloys.

FIGURE 1.16

lens of the microscope.

1.4 Dislocations a

Deformation twins in 3.25 per cent silicon iron. The surface at
the twins is tilted so light is reflected away from the objective

Shear stress
—_—

1.4 DISLOCATIONS b

Although there are many techniques now avail- X
able for the direct observation of dislocations
a
deduced by inference in the early stages of disloca- O Q O Q
tion study (1934 to the early 1950s). Strong evi-

(Chapter 2), the existence of these line defects was

dence arose from attempts to reconcile theoretical
and experimental values of the applied shear stress
required to plastically deform a single crystal. As
explained in section 3.1, this deformation occurs
by atomic planes sliding over each other. In a perfect crystal, i.e. in the
absence of dislocations, the sliding of one plane past an adjacent plane
would have to be a rigid co-operative movement of all the atoms from one
position of perfect registry to another. The shear stress required for this pro-
cess was first calculated by Frenkel in 1926. The situation is illustrated in
Fig. 1.17. It is assumed that there is a periodic shearing force required to
move the top row of atoms across the bottom row which is given by the
sinusoidal relation:

T=—sin— (1.4)

where 7 is the applied shear stress, G is the shear modulus, b the spacing
between atoms in the direction of the shear stress, a the spacing of the rows of
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stress for slip.
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atoms and x is the shear translation of the two rows away from the low-energy
position of stable equilibrium (x = 0).

The right-hand side of equation (1.4) is periodic in b and reduces to
Hooke's law (section 4.2) for small strains x/a, i.e. in the small-strain limit
sin(27x/b) ~ (27x/b) and so T = Gx/a. The maximum value of 7 is then the
theoretical critical shear stress and is

Tth — — (15)

Since b ~ g, the theoretical shear strength is a sizeable fraction of the shear
modulus. Using more realistic expressions for the force as a function of shear
displacement, values of 7y, &~ G/30 are obtained. Although these are approxi-
mate calculations, they show that 7y, is many orders of magnitude greater
than the observed values (10~* to 10™® G) of the resolved shear stress for
slip measured in real, well-annealed crystals. This striking difference between
prediction and experiment was accounted for independently by Orowan,
Polanyi and Taylor in 1934 by the presence of dislocations. Since then, it
has been possible to produce crystals in the form of fibers with a diameter
of a few um (‘microwhiskers’) or even less (‘nanowires’ or ‘nanopillars’), which
have a very high degree of perfection. When entirely free of dislocations,
their strength approaches the theoretical strength.

Other evidence which contributed appreciably to the universal acceptance of
the existence of dislocations in crystals, was the reconciliation of the classical
theory of crystal growth with the experimental observations of growth rates.
Consider a perfect crystal having irregular facets growing in a supersaturated
vapor. At a low degree of supersaturation, growth occurs by the deposition
of atoms on the irregular or imperfect regions of the crystal. The preferential
deposition in imperfect regions results in the formation of more perfect faces
consisting of close-packed arrays of atoms. Further growth then requires the
nucleation of a new layer of atoms on a smooth face. This is a much more
difficult process, and nucleation theory predicts that for growth to occur at
the observed rates a degree of supersaturation of approximately 50 per cent
would be required. This is contrary to many experimental observations which
show that growth occurs readily at a supersaturation of only 1 per cent. The
difficulty was resolved when it was demonstrated that the presence of disloca-
tions in the crystal during growth could result in the formation of steps
on the crystal faces which are not removed by preferential deposition, as
in a perfect crystal. As explained in section 2.3 (Fig. 2.10(c)), these steps
provide sites for deposition and thus eliminate the difficult nucleation
process.
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1.4 Dislocations ﬂ

Geometry of Dislocations

The role of dislocations in plastic deformation is explained in Chapter 3. At this
stage it will be sufficient to describe the basic geometry of an edge and a screw
dislocation line and introduce the appropriate definitions and terminology.

Figure 1.18(a) represents an elementary descriptive model of the atomic
arrangement and bonding in a simple cubic structure. For convenience it is

dislocation

FIGURE 1.18

(@) Model of a simple cubic lattice; the atoms are represented by filled circles, and the bonds between
atoms by springs, only a few of which are shown; (b) positive edge dislocation DC formed by inserting
an extra half-plane of atoms in ABCD; (c) left-handed screw dislocation DC formed by displacing the
faces ABCD relative to each other in direction AB; (d) right-handed screw dislocation DC, () atomic
planes, spacing b, in a perfect crystal; (f) planes distorted by a right-handed screw dislocation.
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n CHAPTER 1: Defects in Crystals

assumed that the bonds can be represented by flexible springs between adja-
cent atoms. It must be emphasized that bonding in real solids is complex
and, in fact, the nature of the bonding determines the fine detail of the
arrangement of the atoms around the dislocation. The arrangement of atoms
around an edge dislocation can be simulated by the following sequence of
operations. Suppose that all the bonds across the surface ABCD are broken
and the faces of the crystal are separated so that an extra half-plane of atoms
can be inserted in the slot, as illustrated in Fig. 1.18(b). The faces of the slot
will have been displaced by one atom spacing, but the only large disturbance
of the atoms from their normal positions relative to their neighbors is close
to the line DC. The deflection and distortion of the interatomic bonds
decrease with increasing distance from the line. This line DC is called a posi-
tive edge dislocation and is represented symbolically by L. A negative edge dis-
location would be obtained by inserting the extra plane of atoms below
plane ABCD and is represented by T.

The arrangement of atoms round a screw dislocation can be simulated by
displacing the crystal on one side of ABCD relative to the other side in the
direction AB as in Figure 1.18(c) and (d). Examination of these models
shows that each can be described as a single surface helicoid, rather like a spi-
ral staircase. The set of parallel planes initially perpendicular to DC have
been transformed into a single surface, and the spiral nature is clearly dem-
onstrated by the distortion of the planes shown in Figs 1.18(e) and (f). DC
is a screw dislocation. Looking down the dislocation line, if the helix
advances one plane when a clockwise circuit is made round it (Fig. 1.18(d)),
it is referred to as a right-handed screw dislocation, and if the reverse is true
it is left-handed (Fig. 1.18(c)).

It is important to realize that for both the edge and the screw dislocations
described, the registry of atoms across the interface ABCD is identical to that
before the bonds were broken.

Burgers Vector and Burgers Circuit

The most useful definition of a dislocation is given in terms of the Burgers cir-
cuit. A Burgers circuit in a crystal containing dislocations is an atom-to-atom
path which forms a closed loop. Such a path is illustrated in Fig. 1.19(a),
i.e. MNOPQ. If the same atom-to-atom sequence is made in a dislocation-
free crystal, Figure 1.19(b), and the circuit does not close, then the first
circuit, Fig. 1.19(a), must enclose one or more dislocations. The vector
required to complete the circuit is called the Burgers vector. It is essential that
the circuit in the real crystal passes entirely through ‘good’ parts of the crys-
tal. For simplicity consider the Burgers circuit to enclose one dislocation as
in Fig. 1.19(a). The sequence of atom-to-atom movements in the perfect
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FIGURE 1.19
(@) Burgers circuit round an edge dislocation with positive line sense into the paper (see text); (o) the
same circuit in a perfect crystal; the closure failure is the Burgers vector.

\\70; /[~

Positive line sense

(a)

FIGURE 1.20
(a) Burgers circuit round a left-handed screw dislocation with positive line sense in the direction
shown; (b) the same circuit in a perfect crystal; the closure failure is the Burgers vector.

crystal is the same as for the circuit MNOPQ in Fig. 1.19(a). The closure fail-
ure QM is the Burgers vector and is at right angles to the dislocation line
(cf. Fig. 1.18(b)). When the Burgers circuit is drawn round a screw disloca-
tion (Fig. 1.20), again with a closed circuit in the crystal containing the dis-
location, the Burgers vector QM is parallel to the dislocation line. This leads
to two important rules:

(a) The Burgers vector of an edge dislocation is normal to the line of the
dislocation.

(b) The Burgers vector of a screw dislocation is parallel to the line of the
dislocation.

In the most general case (Chapter 3) the dislocation line lies at an arbitrary
angle to its Burgers vector and the dislocation line has a mixed edge and
screw character. However, the Burgers vector of a single dislocation has fixed
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length and direction, and is independent of the position and orientation of
the dislocation line.

Burgers circuits taken around other defects, such as vacancies and intersti-
tials, do not lead to closure failures. Two rules are implied by the Burgers
circuit construction used above. First, when looking along the dislocation
line, which defines the positive line sense or direction of the dislocation,
the circuit is taken in a clockwise fashion (Figs 1.19(a), 1.20(a)). Second,
the Burgers vector is taken to run from the finish to the start point of the
reference circuit in the perfect crystal. This defines the right-hand/finish-
start (RH/FS) convention. It is readily shown by use of sketches similar to
those of Figs 1.19 and 1.20, that reversing the line sense reverses the direction
of the Burgers vector for a given dislocation. Furthermore, dislocations with
the same line sense but opposite Burgers vectors (or alternatively with oppo-
site line senses and the same Burgers vector) are physical opposites, in that
if one is a positive edge, the other is a negative edge, and if one is a right-
handed screw, the other is left-handed. Dislocations which are physical
opposites of each other annihilate and restore perfect crystal if brought
together.

The Burgers vectors defined in the simple cubic crystals of Figs 1.19 and 1.20
are the shortest lattice translation vectors which join two points in the lattice.
A dislocation whose Burgers vector is a lattice translation vector is known as
a perfect or unit dislocation. The Burgers vector b is conveniently described
using the indices defined in section 1.1. For example, the lattice vector from
the origin to the center of a body-centered cubic cell is defined both in mag-
nitude and direction by displacements of a/2 in the x-direction, a/2 in the
y-direction and a/2 in the z-direction, and the notation used is b=3[111].
The magnitude (or length) b of the vector is

bz\/(f+f+f>:ﬁ (1.6)
4 4 4 2

Similarly, if b is the shortest lattice translation vector in the face-centered
cubic structure, i.e. b = % (110), then b=a//2.

Dislocation lines can end at the surface of a crystal and at grain boundaries,
but never inside a crystal. Thus, dislocations must either form closed loops or
branch into other dislocations. When three or more dislocations meet at a point,
or node, it is a necessary condition that the Burgers vector is conserved, i.e. vec-
tor total in equals vector total out. Consider the dislocation b; (Fig. 1.21)
which branches into two dislocations with Burgers vectors b, and bs. A
Burgers circuit has been drawn round each according to the line senses indi-
cated. The large circuit on the right-hand side of the diagram encloses two dis-
locations, but since it passes through the same good material as the b, circuit

www.lran-mavad.com

dlgo guwnrigo g Ghgauisih gajo



on the left-hand side the Burgers vector must be the
same, i.e. by. It follows from the diagram that

b, =b, +bs (1.7)

It is more usual to define the Burgers circuits by
making a clockwise circuit around each dislocation
line looking outward from the nodal point. This
reverses the line sense (and hence b;) on the left-
hand side, and then equation (1.7) becomes

b; +b, +b3=0 (1.8)

or, more generally, for n dislocation branches
n
> bi=0 (1.9)
1

The dislocation density p is defined as the total
length of dislocation line per unit volume of crys-
tal, normally quoted in units of cm™? or m *
(1 m ?=10* cm™?). Thus for a volume V contain-
ing line length I, p=1/V. All crystals, apart from
some nanowires, contain dislocations and in well-
annealed crystals the dislocations are arranged in a
rather ill-defined network, the Frank net, as illus-
trated schematically in Fig. 1.22. In well-annealed
metal crystals p is usually between 10'° and
10" m™2, but it increases rapidly with plastic
deformation, and a typical value for a heavily
cold-rolled metal is about 10'* to 10" m™2. The

arrangement of the dislocations depends on the conditions of loading and
some actual examples are presented elsewhere in the book. p is usually lower
in non-metallic crystals than in metal crystals, and values down to 10°> m ™2
can be obtained in carefully grown semiconductor crystals.

1.4 Dislocations ﬂ
/ Line sense

b3
~

,—r"’@
Line sense

.

Line sense
b, : b,
b3
FIGURE 1.21
Three dislocations forming a node.
FIGURE 1.22

Diagrammatic illustration of
the arrangement of
dislocations in a well-
annealed crystal; the Frank

An alternative definition of p, which is sometimes more convenient to use, is net. (From Coftrel|, The
the number of dislocations intersecting unit area of a planar surface within Properties of Materials at
the crystal. If all the dislocations are parallel, the two density values are the High Rates of Strain, /nst.
same, but for a completely random arrangement the volume density is twice Mech. Eng., London,
the surface density. The surface density provides a convenient way of esti- 1957

mating the average distance between dislocations in a network of density p.

With p intersections per unit area, the area per intersection is 1/p and so the

distance between neighboring dislocations is of the order of 1/,/p, i.e. 1073,

107 and 10" m for p equal to 10° 10'° and 10'* m™?, respectively.
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CHAPTER 2

Observation of Dislocations

2.1 INTRODUCTION

A wide range of techniques has been used to determine the properties of
individual dislocations and study the distribution, arrangement and density
of dislocations. Among the experimental techniques, transmission electron
microscopy has been dominant for the past 50 years. In this method
(described in the next section), dislocations are examined either singly or in
groups at high magnification in specimens ~0.1 to 4.0 pm thick. Four other
experimental techniques (described in section 2.3) have proved useful for
providing information about dislocations either in particular materials or
prior to the development of transmission electron microscopy: (1) surface
methods, in which the point of emergence of a dislocation at the surface of
a crystal is revealed; (2) decoration methods, in which dislocations in bulk
specimens transparent to light are decorated with precipitate particles to
show up their position; (3) X-ray diffraction, in which local differences in
the scattering of X-rays are used to show up the dislocations; (4) field ion
microscopy and atom probe tomography, which reveal the position of indi-
vidual atoms. Unlike (4), methods (1), (2) and (3) do not resolve the
arrangement of atoms at the dislocation, but rely on such features as the
strain field in the crystal around the dislocation (Chapter 4) to make it vis-
ible. Visibility in conventional transmission electron microscopy is also due
to contrast resulting from strain, but the more recent technique of high-
resolution transmission electron microscopy does provide for resolution at
the atomic scale in thin specimens.

Computer-based simulation methods have been employed extensively in
recent years and can be divided into two main groups. (1) Atomic-scale sim-
ulation, in which the atomic structure of dislocations and their interaction
with other crystal defects is investigated in model crystals containing up to
typically a few million atoms, i.e. size up to ~100nm. (2) Dislocation
dynamics simulation, in which dislocations are treated as flexible lines that 21

Introduction to Dislocations. www.lran-mavad.com
© 2011 D. Hull and D. J. Bacon. Published by Elsevier Ltd. All rights reserved.
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FIGURE 2.1

Two basic operations of the
TEM imaging systems
involving projecting (a) the
diffraction pattern and (b)
the image on to the
viewing screen. The
intermediate lens selects
either the back focal plane
or the image plane of the
objective lens as its object.
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m CHAPTER 2: Observation of Dislocations

move and interact within an elastic medium of size up to ~ 100 pm.
Simulation methods are described in section 2.4.

2.2 ELECTRON MICROSCOPY

General Principles
Transmission electron microscopy has been the technique most widely used for
the observation of dislocations and other crystal defects. Static arrangements
of defects are usually studied, but in some cases, miniaturized tensile stages
are used to deform specimens (less than 3 mm in length) within a micro-
scope, thus providing direct observation of dislocation interaction and multi-
plication processes. Transmission electron microscopy is applicable to a wide
range of materials, subject only to the conditions that specimens can be pre-
pared in very thin section and that they remain stable when exposed to a
beam of high-energy electrons within a high vacuum. The electrons in a con-
ventional transmission electron microscope have an energy of typically
100 keV. Inelastic scattering of the electrons as they pass through a solid sets
an upper limit to the specimen thickness of from about 100 nm for heavy,
high atomic number elements to 1000 nm for light elements. Only for high-
voltage microscopes of energy ~ 1 MeV can these limits for electron transpar-
ency be exceeded, and then only by about
five times. Like its light counterpart, the
N K electron microscope uses lenses to focus
the beam and produce an image, but the
lenses are electromagnetic. The electrons
behave as de Broglie waves, with a wave-
length of 3.7 pm at 100 keV, and this sets
l a theoretical limit to the resolution of the
same order of magnitude. In practice, lens
aberrations and electrical and mechanical
stabilities place the limit at typically 0.2 to
0.4 nm.

SH

Schematic ray diagrams for a conventional
transmission microscope are shown in
Fig. 2.1. Electrons emerge from the con-
denser lens onto the specimen, which is
usually a disc a few mm in diameter.
Within a crystalline sample, the scattered
m:'ge electrons are concentrated into discrete
directions. These diffracted beams satisfy
the geometrical requirements of Bragg's

(b) Law, in that each set of parallel crystal
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2.2 Electron Microscopy m

planes diffract electrons in a specific direction. The diffracted electron beams
are brought to focus in the back focal plane of the objective lens (Fig. 2.1
(a)), which is the plane of the diffraction pattern. When the microscope is
operated in the diffraction mode, the beam from the diffraction lens is focused
on the back focal plane and the subsequent lenses project a magnified dif-
fraction pattern on the fluorescent screen. The objective lens also produces
an inverted image of the specimen in the first image plane, however, and if
the beam from the diffraction lens is focused on this plane, the microscope
is in the imaging mode and produces a magnified image (Fig. 2.1(b)), the
final magnification being variable between about 10° and 10° times. An
aperture is placed in the objective back focal plane to permit only one beam
to form the image. When the beam transmitted directly through the speci-
men is selected, a bright-field image is displayed, whereas when one of the
diffracted beams is chosen, a dark-field image is observed. For the analysis of
defects observed in the imaging mode, information on the diffraction condi-
tions is required and is obtained in the diffraction mode. Of particular
importance is the diffraction vector g perpendicular to the diffracting planes.

The image simply reveals the variation in intensity of the selected electron
beam as it leaves the specimen. In the theory of this diffraction contrast, it is
usually assumed for simplicity that the intensity variation across the bottom
surface of the specimen can be obtained by considering the specimen to con-
sist of narrow columns (a few nm wide) with axes parallel to the beam: the
electron intensity does not vary across a narrow column and is independent
of neighboring columns. The final image is therefore an intensity map of the
grid of columns. Furthermore, a two-beam condition is assumed to apply,
wherein the contribution of the electrons in the directly transmitted beam
and one diffracted beam only, is considered, i.e. only one set of crystal planes
is at, or close to, the Bragg angle. These column and two-beam approximations
have been shown to be valid for conventional microscopy. If the specimen is
perfectly flat, uniformly thick and free of defects, the image is homogeneous
with no variations in intensity. Image contrast only arises if variations in
beam intensity occur from one part of the specimen to another. For exam-
ple, if the specimen is bent in one region sufficiently to affect crystal planes
which are close to the Bragg condition, strong variations in intensity can
result. Dislocations and many other crystal defects bend crystal planes.

The effect of crystal defects on the image depends on the vector u by which
atoms are displaced from their perfect lattice sites. In the column approxima-
tion, u within a column varies only with z, the coordinate along the column
axis. Solutions of the equations for the electron intensities contain a factor
g - u, or alternatively g - du/dz, which is not present for a perfect crystal.
Thus, diffraction conditions for which g - u (or g - du/dz) is zero will not
lead to contrast in the image. The physical interpretation of these effects
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FIGURE 2.2

Planes near an edge

dislocation bent into

the

orientation for diffraction.

Incident

Transmitted

P B Ty~ i,

follows from the fact that du/dz is the variation of displacement with depth
and it therefore measures the bending of atomic planes. If the reflecting
planes normal to g are not tilted by the defect, there is no change in dif-
fracted intensity and the defect is invisible.

Dislocations

It can be seen from Fig. 1.18 that certain planes near a dislocation are bent,
and the bending decreases with increasing distance from the dislocation.
(Expressions for the elastic field of a straight dislocation are given in section
4.3.) If these planes are bent into a strongly diffracting orientation, the
intensity of the directly transmitted beam will be reduced (and that of the
diffracted beam increased) in columns near the dislocation. This is shown
schematically in Fig. 2.2. The dislocation will appear as a dark line in the
bright-field image (or as a bright line in a dark-field image). An example of
two rows of dislocations is shown by the bright-field micrograph of Fig. 2.3.
The actual dislocation structure observed in a particular specimen depends
very much on the material and, if it has been deformed, on the strain, strain
rate and temperature it has experienced. Examples are to be found in Figs
24, 6.17, 7.21, 9.1, 9.2, 9.9, 10.12 and 10.18. The width of a dislocation
image is determined by the variation of du/dz across the specimen, i.e. by
the range of the dislocation strain field, and is typically 10 to 50 nm. The
actual form of the image depends on the diffraction conditions, the nature
of the dislocation and its depth in the foil. It may appear as a single line
(not necessarily centered on the real dislocation), a double line, a wavy line
or a broken line. Also, the line may be invisible, as explained above, and
this may be exploited to determine the Burgers vector b.

The invisibility criterion is g- u= 0. Consider first a straight screw
dislocation. In an isotropic medium, planes parallel to the line
remain flat (see Fig. 1.18), for u is parallel to b (section 4.3).
Hence, when g is perpendicular to b, g-u=g-b =0 and the invis-
ibility criterion is satisfied. If the specimen is tilted in the micro-
scope to find two sets of diffracting planes g and g, for which the
line is invisible, b must be perpendicular to both g and g, and
therefore has the direction of g; X g,. For an edge dislocation, all
planes parallel to the line are bent, and u is non-zero in all direc-
tions perpendicular to the line. The criterion g - u= 0, therefore,
requires in this case that both g-b and g- (b Xt) be zero, where t
is a vector along the line. It is satisfied only when g is parallel to
the line, for only planes perpendicular to the line remain flat (see
Fig. 1.18). For the mixed dislocation, which produces a combina-
tion of edge and screw displacements, there is no condition for
Diffracted which g-u is exactly zero. Also, in anisotropic crystals no planes
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2.2 Electron Microscopy ﬂ

remain flat around edge and screw disloca- A
tions, except in a few special cases. Thus,
the invisibility method for determining b
often relies on finding diffraction vectors
which result in weak contrast rather than
complete invisibility. It has proved, never-
theless, a powerful technique in dislocation
studies. An example is illustrated in Fig. 2.4.
Here, three different diffraction vectors g
have been chosen to produce three different
images of the same field of view. It contains
a network of four sets of dislocation lines.

Although modern transmission electron
microscopes have resolution limits of less
than 1 nm, the dislocation image width is
much greater than this, and fine structure of
the dislocation, such as splitting into par-
tials (Chapters 5 and 6) may not be
resolved. The weak-beam technique can over-
come this disadvantage. It utilizes the fact
that when the specimen is tilted away from
the Bragg orientation the diffracted beam
from the perfect crystal is weak; strong dif-
fraction from a dislocation can only occur when g - (du/dz) is large. The
strong bending of planes this requires only occurs close to the center of the
dislocation. The weak-beam images of dislocations are therefore much nar-
rower (typically 1—2 nm) than those obtained under strong-beam condi-
tions, although the experimental procedure is more demanding. An example
of closely-spaced dislocations resolved in silicon is shown in Fig. 2.5. The
invisibility criteria are the same as those discussed above, and the weak-
beam method has been applied to many materials.

Planar Defects

Stacking faults and other coherent interfaces without long-range strain fields
also form characteristic image contrast in the transmission electron micro-
scope. A fault is produced by the displacement of the crystal above the fault
plane by a constant vector u relative to the crystal below (section 1.3). For
columns passing through the fault, this therefore introduces a phase factor
27 g - u into the main and diffracted beam amplitudes. Thus, when g - u is
zero or an integer, no contrast is present and the fault is invisible. This is
demonstrated schematically in Fig. 2.6(a), where u lies in the plane of the
fault and the diffracting planes are parallel to u. For other values of g - u,
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FIGURE 2.3

(@) Thin film transmission
electron micrograph
showing two parallel rows
of dislocations. Each dark
line is produced by a
dislocation. The
dislocations extend from
top to bottom of the foil
which is about 200 nm
thick. (b) The line diagram
illustrates the distribution
of the dislocations in the
foil and demonstrates that
the photograph above
represents a projected
image of a three-
dimensional array of
dislocations.
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FIGURE 2.4

llustration of the use of the
g-b =0 method to
determine the Burgers
vector of dislocations in an
Al—2% Mg alloy. (From
Lindroos, Phil. Mag. 24,
709, 1971))

however, the fault produces contrast, as
implied by Fig. 2.6(b). When the fault is
inclined to the specimen surface, contrast takes
the form of light and dark fringes parallel
to the line of intersection of the fault plane
with the surface, as shown by the example in
Fig. 2.7. The precise form of the fringe contrast
depends on the diffraction conditions emp-
loyed, and this enables faults and defects such
as coherent twin, grain and phase boundaries
to be analyzed.

Lattice Imaging

Under certain conditions, it is possible to study
the atomic structure of defects by exploiting
the full resolution of the transmission electron
microscope to image the actual columns of
atoms in a thin sample. An edge dislocation
lying normal to the specimen surface, for
example, produces an extra half-plane in the
image, as shown by the example in Fig. 9.21.
Other experimental images are shown in
Figs 9.27(b) and 9.29. Unlike conventional
microscopy in which the image is formed by a
single (direct or diffracted) beam, lattice imag-
ing requires two or more beams to pass
through the objective aperture in order that the
periodicity of the object, i.e. the lattice planes,
be resolved. Spacings down to 0.1 nm have
been resolved by this technique. In early stud-
ies, it was assumed that one-to-one correspondence exists between the
fringes and the crystal planes, and that atomic positions can be visualized
directly from the image. It is now known, however, that this is only true in
special circumstances. They require the specimen to be very thin
(~1—10nm) so that rediffraction of diffracted beams cannot occur.
Interpretation of lattice images is difficult if this condition is not met.

Image Simulation

The transmission electron microscope image of a dislocation depends not
only on the diffraction conditions but also on the form of the dislocation
and the nature of the specimen. For example, the g-b = 0 invisibility crite-
rion only applies generally to isotropic crystals, which have the same elastic
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properties in all directions. Except in a few
cases, real crystals are elastically anisotropic to
varying degrees, and when the anisotropy is
strong the criterion cannot be applied to ana-
lyze dislocations. Another example arises
when the dislocation is a loop, as occurs in
irradiation damage or quenching. If the loop
is too small (less than about 10 nm in diame-
ter) to be resolved distinctly, conventional
analysis is not possible, although the image
does contain information on loop plane and
Burgers vector. In these situations, defect identifi-
cation is best undertaken by matching real micro-
graphs to computer-generated ones. The latter are
obtained for all possible forms the unknown
defect might have using the same diffraction con-
ditions as those employed experimentally. It is
possible to identify the defect uniquely by suit-
able choice of conditions.

An example of real and simulated images due to
small vacancy loops in ruthenium is shown in
Fig. 2.8. Each simulated micrograph is produced
by first computing the electron intensity using the
column approximation, with the displacement
field of the trial defect

obtained from elasticity the-

ory. Typically, several thou-

sand columns are required.

The resulting grid of intensi-

ties is then used to generate

a corresponding grid of A

dots, the size (or ‘greyness’) (@)

of each dot being given by

the intensity. The simulated =~ FIGURE 2.6
image is therefore formed
in a manner analogous to
photograph reproduction in
newspapers.

2.2 Electron Microscopy

FIGURE 2.5

A weak-beam 220 dark-field image of a dislocation in an
annealed silicon specimen showing constricted segments. The
inset shows the diffracting conditions used to form the image.
(From Ray and Cockayne, Proc. Roy. Soc. A325, 543, 1971.)
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0008
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(b)

Displacements of the reflecting planes shown by lines at a stacking fault AB. Diffraction
vector g is perpendicular to these planes. In (a) g- u =0 and no contrast occurs. In (b)
g- u == 0 and interference between waves from above and below the fault gives a fringe
pattern. (From Howie, Metallurgical Reviews, 6, 467, 1961.)

Another example is provided in Fig. 2.9. In Fig. 2.9(a), atomic positions around
a stacking-fault tetrahedron (section 5.7) formed from 45 vacancies in copper
have been calculated by atomic-scale computer simulation (section 2.4). The
atomic coordinates have been used to predict the weak-beam image in a
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transmission electron microscope (Fig. 2.9(b)). It
matches the experimental image (Fig. 2.9(c)) from
proton-irradiated copper very well.

Other Factors

Some factors which limit the applicability of transmis-
sion electron microscopy have been noted already. To
attain the specimen thickness required for electron
transparency, it is usually necessary to first cut the sam-
ples by mechanical or spark-erosion machining to a
thickness of about 10—100 pm, and then thin the

Stacking fault

(b)

FIGURE 2.7

(@) Thin film transmission
electron micrograph showing
the fringe pattern typical of
stacking faults which lie at
an angle to the plane of the
foil, as illustrated
schematically in ().

region in the middle by techniques such as electrolytic
polishing, chemical polishing or ion-beam sputtering.
Other methods, such as mechanical cleavage for layer
crystals or deposition from solution for some organic
crystals, have been used less commonly. Some materi-
als, such as organic solids, are unstable under the effect
of the electron beam and can only be viewed for short
times before decomposing.

For transmission electron microscopy to be of value, it
is important that the dislocations seen in the thin foil
sample are typical of those of the bulk material. This is sometimes not the case.
For example, inadvertent deformation during thinning can introduce addi-
tional dislocations. On the other hand, dislocations close to the surface experi-
ence forces attracting them to the surface (section 4.8), and this effect can
substantially reduce the dislocation density in thin specimens. As explained ear-
lier, high-voltage microscopes allow thicker samples to be used so that these
problems are reduced. However, this advantage has to be offset against the
greater cost of the instrument. Also, if an atom in a crystal acquires a kinetic
energy greater than its threshold displacement energy, which is typically 25 eV, it
can escape from its lattice site and create a vacancy-interstitial pair. Materials
with atomic weight up to about 170 suffer such displacement damage from
bombardment with electrons with energy of 1 MeV or greater, and their struc-
ture is therefore changed by examination in the high-voltage microscope. This
feature can, of course, be used with advantage for radiation-damage studies.

2.3 OTHER EXPERIMENTAL METHODS
Surface Methods

If a crystal containing dislocations is subjected to an environment which
removes atoms from the surface, the rate of removal of atoms around the
point at which a dislocation emerges at the surface may be different from
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2.3 Other Experimental Methods a

computer
simulated

that for the surrounding matrix.
The difference in the rate of
removal arises from one or more
properties of the dislocation: (1)
lattice distortion due to the dislo-
cation; (2) geometry of planes
threaded by a screw dislocation,
which produces a surface pit; (3)
concentration of impurity atoms
at the dislocation, which changes
the local chemical composition. If
the rate of removal is more rapid
around the dislocation, a pit is
formed, Fig. 2.10, and if less rapid
a small hillock is formed. The
most common methods for the
slow, controlled removal of atoms
are chemical and electrolytic etching. Other methods include thermal etch-
ing, i.e. evaporation, and sputtering, in which surface atoms are removed by
gas ion bombardment. The specimen surface in Fig. 2.11 has been etched
and preferential attack has produced black spots identified as pits.

experimental

Note that when a screw dislocation emerges at the surface of a crystal that is
growing due to deposition of atoms from a liquid or vapor, the surface step
(Fig. 2.10(c)) provides a favorable location for atom attachment. The screw
dislocation mediates growth.

Confirmation of a one-to-one correspondence between dislocations and etch
pits is illustrated in Fig. 2.12. The photograph shows a regularly spaced row
of etch pits formed at the boundary between two germanium crystals.
Precise X-ray measurements to determine the misorientation between the
crystals showed that the boundary was a symmetrical pure tilt boundary
(section 9.2), which can be described as an array of edge dislocations spaced
one above the other as shown in Fig. 2.12(b). Such an array produces a tilt
between the grains on opposite sides of the boundary. If b is the magnitude
of the Burgers vector of the edge dislocations and D their distance apart, the
angle of misorientation is 6 =b/D (equation (9.2)). For the boundary in
Fig. 2.12(b), the measured value of § was 65 sec of arc and the predicted
value of D was 1.3 pm. This agrees closely with the spacing of the etch pits
shown in the photograph, confirming that in this example there is a one-to-
one correspondence between etch pits and dislocations.

Although etch pit studies are limited to the surface examination of bulk spe-
cimens the technique can be used to study the movement of dislocations as
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b=1/2[1010]
FIGURE 2.8

Real and computer-
simulated images of
vacancy loops produced by
heavy-ion bombardment of
ruthenium. The diffraction
vector is g, and from
image matching, loops a
and 3 have the Burgers
vector b and loop normals
n shown. (Courtesy of W.
Phythian.)
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FIGURE 2.9

Stacking-fault tetrahedron in irradiated copper. (@) Atoms in two {111}
planes through a tetrahedron in a computer simulation. (b) Experimental
and (c) simulated weak-beam images, with a wire frame on the right
showing the orientation of the defect. (From Schaublin, Dai, Osetsky and

demonstrated by  Gilman and
Johnston (1957) in lithium fluoride.
This is illustrated in Fig. 2.13. The site
of a stationary dislocation in a crystal
appears as a sharp bottom pit. If a dis-
location moves when a stress is
applied to the crystal, the distance
moved depends on the applied stress
and the length of time the stress is
applied. If the crystal is etched again,
the new position of the dislocation is
revealed by a new sharp bottom pit.
The etchant also attacks the old pit
which develops into a flat bottom pit.

In general, surface techniques are lim-
ited to crystals with a low dislocation
density, less than 10 m2, because
the etch pits have a finite size and are
very difficult to resolve when they
overlap each other. The distribution of
dislocations in three dimensions can
be obtained, using this technique,
by taking successive sections through
the crystal.

Decoration Methods

The dislocations in crystals which are
transparent to visible light and infra-
red radiation are not normally visible.
However, it is possible to decorate the
dislocations by inducing precipitation
along them. Sites along the dislocation

Victoria (1998), Inter. Congr. on Electron Microscopy, vol. 7, p. 173, Institute ~ are favored by the lattice distortion

of Physics Publishing.)

there (section 10.5). The effect pro-

duced is similar in appearance to a
row of beads along a fine thread. The position of the dislocation is revealed
by the scattering of the light at the precipitates and can be observed in an
optical microscope. In most applications of this method the decoration pro-
cess involves the heating of the crystals before examination and this restricts
the use of the method to the study of ‘recovered’ or high-temperature defor-
mation structures. It is not suitable for studying structures formed by low-
temperature deformation.
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The procedure with the widest
range of application, which has
been used to study dislocations
in alkali halide and semiconduc-
tor crystals, is to dope with impu-
rity atoms. Precipitation can
subsequently be induced along
the dislocations by suitable heat (@)
treatment. Figure 2.14 illustrates

this for KCI to which a small

amount of AgCl was added. The

crystals were annealed to precipi-

tate silver particles on the disloca-

tions. The helical dislocation in

CaF, shown in Fig. 3.21 was

revealed by the same technique.

Dislocations in silicon can be ©
decorated by a similar technique  pFIGURE 2.10
and then observed with infrared
radiation by diffusing in metallic
elements such as copper or alu-
minum. These decoration techni-
ques can be used in combination
with etch-pit studies to demon-
strate the one-to-one correspon-
dence between dislocations and
etchpits. They have been reviewed by Amelinckx
(1964).

An optical method which does not depend on
decoration has been used to study dislocations
in magnetic bubble-domain materials. It utilizes
detection by polarised light of the birefringence
induced by the stress from the dislocation. A
brief review is given by Humphreys (1980).

X-ray Diffraction Topography

Direct observation of dislocations with X-rays
is achieved by a method somewhat similar to
electron diffraction, but with a greatly reduced
resolution. This rather specialized technique
produces dislocation image widths of 1 pm or
greater. Consequently, it is applicable only to

2.3 Other Experimental Methods a

(d)

Formation of etch pits at the site where a dislocation meets the surface. (a) Edge
dislocation, the cylindrical zone around the dislocation represents the region of the
crystal with different physical and chemical properties from the surrounding crystal.
(o) Conical-shaped pit formed at an edge dislocation due to preferential removal of
atoms from the imperfect region. (c) Emergent site of a screw dislocation. (d) Spiral
pit formed at a screw dislocation; the pits form by the reverse process to the crystal
growth mechanism.

FIGURE 2.11
Etch pits produced on the surface of a single crystal of tungsten.
(From Schadler and Low, unpublished.)
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FIGURE 2.12

(@) A row of etch pits
formed at the boundary
between two germanium
crystals. The etch pits are
uniformly spaced. (b)
Diagrammatic
representation of the
arrangement of dislocations
in the boundary revealed
by the etch pits in (a). This
is a symmetrical pure tilt
boundary which consists of
a vertical array of edge
dislocations with parallel
Burgers vectors of the
same sign. (After Vogel,
Pfann, Corey and Thomas,
Physical Review 90, 489,
1953)

m CHAPTER 2: Observation of Dislocations

the study of crystals with
low dislocation densities
=<10'°m™, but has the
advantage that the penetra-
tion of X-rays is greater
than electrons so that
much thicker specimens
can be used. The speci-
men, usually a large single
L crystal, is oriented with
respect to the X-ray beam
so that a set of lattice
planes is set at the Bragg
angle for strong reflection.
T The reflected beam is
examined photographi-
cally. As in electron diffrac-
tion, any local bending of
the lattice associated with
a dislocation results in a
change in the reflection conditions and the X-rays are scattered differently in
this region. The difference in the intensity of the diffracted X-rays can be
recorded photographically. A photograph of dislocations in a silicon crystal
revealed by X-ray diffraction topography is shown in Fig. 2.15.

Boundary

| [ 1]
| [ 1]
| ]
[ ]

L

L D=b/0

b

Grain 1 — | — Grain 2

(b)

Field Ion Microscopy and Atom Probe Tomography

The maximum resolution of the electron microscope does not, in general,
allow the examination of the positions of individual atoms and, in particu-
lar, point defects cannot be detected unless they form in clusters. This limita-
tion is overcome by the field ion microscope which has a resolution of 0.2
to 0.3 nm. The specimen is a fine wire which is electropolished at one end
to a sharp hemispherical tip. Within the microscope chamber, the tip is
sharpened further to a radius between 5 and 100 nm by field evaporation, a
process in which a high electric field (~100 Vnm™') removes atoms from
the tip surface.

An image of the atom positions on the tip surface is obtained by field ioniza-
tion. The specimen is contained at cryogenic temperatures in a chamber evac-
uated to a high vacuum and into which a low-pressure imaging gas of
helium or neon is admitted. The specimen is held at a positive potential of
several kV with respect to a fluorescent screen, thereby producing a high field
in the range 10—100 Vnm ™' at the specimen tip. The field polarizes gas
atoms near the tip and attracts them towards it. After repeated collisions
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with the cold surface, the gas atoms
slow down sufficiently for them to occa-
sionally become ionized as they pass
through the strong field at the protrud-
ing surface atoms. The electrons enter
the specimen and the positive gas ions
are repelled by the field to the screen.
Since they travel approximately radially,
there is a geometrical magnification of
about d/r, where d is the distance from
the tip to the image and r is the tip
radius. Magnifications of the order of
10° times are obtained. Only about 1 in
10 of the surface atoms protrude suffi-
ciently to ionize the image gas, and they
appear as bright spots in the image.
These atoms are at the edge of the crystal
planes where they intersect the tip sur-
face. The image therefore consists of sets
of concentric rings of bright spots, each
set corresponding to the surface ledges
of planes of a particular crystallographic
index. A vacancy is revealed in the image
as a missing spot, and more complicated
defects produce greater disruption to the
ring pattern. An example of a grain
boundary in tungsten is shown in
Fig. 2.16. It is seen that the disruption is
strongly localized along the boundary,
rather like the simple bubble-raft model
of Fig. 1.14.

Although the image only shows details

2.3 Other Experimental Methods m

Initial Final
dislocation dislocation
position position

(a)

FIGURE 2.13

Etch pits produced on a lithium fluoride crystal. The crystal has been
etched three times. The dislocation at A has not moved between each
etching treatment and a large pyramid-shaped pit has formed. The
dislocation revealed by the three pits B moved from left to right between
etching treatments to the positions indicated by the pits. Subsequent
etching of a pit after the dislocation has moved produces a flat bottom
pit. (From Gilman and Johnston (1957), Dislocations and Mechanical
Properties of Crystals, p. 116, Wiley.)

of the positions of atoms on a surface, field ion microscopy may be used to
reveal three-dimensional structures. This is achieved by alternating the for-
mation of field ionization images with the repeated removal of surface
atoms by field evaporation. It has been used to investigate structures associ-
ated with radiation damage, dislocations and grain boundaries.

As an enhancement of the field ion technique, atom probe field ion micros-
copy has been developed to investigate the distribution of individual alloy-
ing and impurity atoms in materials. In early studies, an aperture at the
image screen was used to permit a surface atom removed by field evapora-
tion to enter a mass spectrometer, where its nature was analyzed. The
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m CHAPTER 2: Observation of Dislocations

FIGURE 2.14

A thin crystal of KCI
examined in an optical
microscope. Particles of
silver have precipitated on
the dislocations, which are
in the form of a network.
Only part of the network is
in focus. (From Amelinckx,
Acta Metall. 6, 34, 1958.)

material volume analyzed was restricted by an
aperture size ~1 nm. By the end of the 1990s,
three-dimensional atom probes (3DAPs) using
position-sensitive detectors for single atoms
allowed atoms from regions ~10 nm in size to
be collected, and more recent developments in
this field of atom probe tomography have
increased the size again to over 50 nm, so that
volumes containing over 100 million atoms
can be analyzed. The technique has been
applied to a wide range of materials to study
microstructural/chemical features such as pre-
cipitation and segregation at the atomic-level.
Figure 2.17 shows orthogonal 3DAP images
revealing segregation of phosphorus atoms and
precipitation of copper along a dislocation in
an iron-based alloy. The formation of Cottrell
atmospheres of solute atoms along dislocations is discussed in section 10.5.

2.4 COMPUTER SIMULATION

The power of computers can be exploited to investigate properties of disloca-
tions that are not open to direct study by experiment. The techniques
involved can be divided into two broad categories. One simulates disloca-
tions and other defects in crystals modeled at the atomic scale. The other
treats the crystal as an elastic continuum with no atomic discreteness.

Atomic-Level Simulation

Generally, the experimental techniques described above do not permit the
atom positions at the center or core of a dislocation to be studied. (The core
is the region around a dislocation in which the distortion is too large to be
described by elasticity theory (see section 4.4): it is typically a few inter-
atomic spacings in size.) The core structure is important because, as will be
seen in later chapters, it determines characteristics such as the slip plane of
the dislocation, the ease with which it slips, its interaction with other defects
and its effect on electrical behavior of non-metals. These features can be
investigated by computer simulation.

Two distinct approaches are used. First principles or ab initio methods incor-

porate the quantum mechanical nature of bonding between atoms. The

energy and configuration of the atomic system is determined by solving

Schrodinger’s equation for interacting electrons. Several computer codes

based on density functional theory are available for this purpose, but they
www.Iran-mavad.com
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2.4 Computer Simulation ﬂ

are demanding in computer power and, for
that reason, are restricted to model systems
containing typically 100 to 1000 atoms. They
have been used to determine the local atomic
structure and energy associated with solute
atoms, vacancies, self-interstitials and small
clusters (up to four or five) of these defects.
They are also valuable for providing a data-
base of crystal properties for fitting the
adjustable parameters in empirical interatomic
potentials (see below). First principles calcula-
tion does not lend itself easily to simulation of
dislocations, however, because the small model
size is not generally compatible with the long-
range strain field of these defects (Chapter 4).
Nevertheless, important information on some
dislocations has been obtained by choosing
specific model shape and boundary conditions
perpendicular to the dislocation in order to FIGURE 2.15
minimize this effect. Also, use of periodic boundary conditions parallel to  X-ray diffraction topograph
the dislocation allows an infinitely long dislocation to be simulated. (micrograph) showing
Notably, this method has been used to establish that the atomic structure of dislocations in a single
the core of the screw dislocation in iron and some other body-centered cubic  crystal of silicon. No
metals has the non-degenerate form described in section 6.3 (Frederiksen magnification occurs in

and Jacobsen, 2003). recording the topograph,
. . . . but by using very fine grain
The other approach to atomic-scale simulation employs models that provide g, photographic

a reasonably accurate description of the atomic structure of the dislocation  gmyisions subsequent
core yet are large enough to allow for the influence of the dislocation strain  pagnification up to
field. Use of these larger models enables effects of applied stress and temper-  apout x 500 is possible.
ature on dislocation properties, and the interaction of dislocations with  (From Jenkinson and Lang
other defects to be investigated. The methods are broadly known as molecular  (1962), Direct Observation
statics and molecular dynamics. In both cases, a computer program is used first  of Imperfections in

to generate atomic coordinates for a perfect crystal of specified structure, ori-  Crystals, p. 477,
entation and size, and then a dislocation is introduced by appropriate dis-  Interscience.)
placement of the atoms. An infinitely long dislocation is simulated by use of

periodic boundary conditions in the direction of the dislocation line. Other

defects such as point defects, precipitates, dislocation loops and grain

boundaries can also be created if required. Motion of the dislocation can be

studied by applying shear displacements or forces to atoms on the bound-

aries of the model. Visualization is an important aspect of computer simula-

tion because it enables dislocation behavior to be more clearly understood.

Several algorithms are in use to identify the position and coordination of

atoms in the dislocation core.
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m CHAPTER 2: Observation of Dislocations

FIGURE 2.16

Field ion micrograph of a
grain boundary at the tip of
tungsten needle. Each
bright spot represents a
tungsten atom. (From
Scientific American, Sept.
1967.)

The potential energy of the model system and the forces
between the atoms are computed from an interatomic
potential. Potentials are available for the simulation of
many materials. Those used for metals are based mainly
on the Embedded Atom Model (EAM). Their empirical
parameters are obtained by fitting to material properties
such as elastic constants, phonon spectra, cohesive
energy, stacking fault energy, and surface and point
defect energies, some of which are derived from ab initio
calculations.

In molecular statics, a crystal at temperature T=0K is
modeled, i.e. the kinetic energy of the atoms is equal to
zero, and the system achieves equilibrium when the
potential energy is minimized. Molecular statics codes
find this state by moving the atoms repeatedly in a series
of iterations. In molecular dynamics, kinetic energy is
not zero and at equilibrium the average kinetic energy
per atom equals 3kT/2, where k is Boltzmann's constant.
At a given instant of time t, the acceleration of every
atom is calculated from the force on it due to its neighbors using Newton’s
second law (force = mass times acceleration). The computer code uses this
information to predict the position of all atoms at time (¢ + At), where At is
the molecular dynamics time-step. This procedure is repeated to enable the
trajectory of atoms to be followed for as long as is necessary to complete
the process under investigation. To maintain accuracy, At is typically of the
order of one to a few femtoseconds (1 fs=10"""s).

The need to achieve results in reasonable computing time limits molecular
statics and molecular dynamics modeling in several ways. First, the comput-
ing time per atom is determined by the time needed to compute the energy
of an atom and the force on it due to its neighbors. Thus, to minimize the
time, the range of the interatomic potential should be as short as possible:
the EAM potentials satisfy this requirement. Second, the total time is propor-
tional to the number of atoms and the number of iterations (molecular stat-
ics) or time-steps (molecular dynamics) required to complete the
simulation. Unless computer systems with many processors in parallel are
available, models are limited to 10° to 107 atoms, but this is usually suffi-
cient for the study of single dislocations and their interaction with other
crystal defects mentioned above. With regard to time-scale in molecular
dynamics, the number of time-steps that can be accomplished within a rea-
sonable computing time on a single processor is typically in the range 10° to
10, As a consequence, the total simulated time is limited to the order of
nanoseconds (1 ns=10"s) and the applied strain rate is high compared
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2.4 Computer Simulation

FIGURE 2.17
Orthogonal views of an atom map of phosphorus segregation and copper-rich precipitates on a dislocation (arrowed) in a neutron-
irradiated ferritic steel. (From Miller and Russell, J. Nucl. Mater. 371, 145, 2007. Copyright (2007) with permission from Elsevier.)

with laboratory tensile tests. For example, a strain rate of 10’ s~' is required
to achieve a strain of 1% in 1 ns. This corresponds to a dislocation velocity
of 10 to 100 ms™' in models of typical size. (The relationship between dislo-
cation velocity, dislocation density and strain rate is derived in section 3.9.)

An example of a model is illustrated in Fig. 2.18(a). The dimensions are usu-
ally in the range 10 to 100 nm. Periodic boundary conditions are used along
the direction of the dislocation (x-axis for the screw and y-axis for the edge).
A shear stress 7 can be applied by imposing either shear forces or displace-
ments to atoms on the *z boundaries, and this induces the dislocation to
move on the x-y glide plane where it encounters an obstacle of interest. The
shape (visualized by atoms in the core) of a dislocation overcoming a peri-
odic row of 2 nm voids of spacing 41 nm in a model of iron at two tempera-
tures is shown in Fig. 2.18(b). The edge dislocation with Burgers vector
#[111] was initially straight and glided to the right under increasing applied
strain. It was pinned by the voids and the shapes in the figure are those just
before it broke away at the critical stress 7. indicated. The shapes for 0 K and
300 K were obtained by molecular statics and molecular dynamics simula-
tion, respectively. The critical stress is seen to decrease, and the dislocation
to bow out less, with increasing temperature.
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FIGURE 2.18

(@) Schematic illustration of the crystal cell used to simulate interaction of a dislocation with a row of
obstacles. (b) Critical line shape for a dislocation passing a row of 2 nm voids with spacing 41 nm in
iron at 0 and 300 K. Scale unit a is the lattice parameter of iron (0.286 nm). (From Bacon, Osetsky
and Rodney, Dislocations in Solids, vol. 15, p. 3 (ed. J. P. Hirth and L. Kubin), North-Holland.
Copyright (2009) with permission from Elsevier.)

The results in Figs 2.9(a), 3.13, 5.4, 5.8, 6.9, 6.10, 6.11 and 6.21 were pro-
duced by atomic-scale computer simulation. Ways in which information on
the atomic core structure of dislocations obtained by simulation can be pre-
sented graphically are discussed in section 10.3.

Continuum-Level Simulation

The discrete atomic structure of a crystal is neglected in elasticity theory and
the material is treated as a continuum. As will be seen in Chapter 4, the dis-
tortion created in crystals by dislocations is predicted with reasonable accu-
racy by linear elasticity theory and the forces on dislocations that make them
move in response to external and internal stress can also be calculated in the
same framework. Later chapters will demonstrate that elastic theory of
straight dislocations forms the bedrock of much of our understanding of
dislocation-related properties of materials. Nevertheless, dislocations are sel-
dom straight, as has been seen already in this chapter, and there are situa-
tions where line curvature is important. Unfortunately, it is generally not
possible to obtain analytical solutions for properties of curved dislocations
in elasticity theory and a numerical treatment has to be used. This is the
approach of the simulation method known as dislocation dynamics (also
known as discrete dislocation dynamics and line dislocation dynamics).
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Figure 2.19 illustrates the way in which dislocations
are represented by nodes (drawn as circles) con-
nected to each other by straight dislocation seg-
ments. Each segment is characterized by its Burgers
vector and direction in space between two nodes,
and an explicit sign convention has to be used so
that Burgers vector is conserved at every node, as
described in section 1.4. The degree to which seg-
mented dislocations mimic real dislocations dep-
ends principally on two factors, as follows. FIGURE 2.19

One is the way in which nodes move in response to Representation of flexible dislocations by nodes (shown
forces on them from their own line, other disloca- S Circles) connected by straight segments.
tions, other sources of internal stress and externally

applied stress. The glide force is related to the stress by equation (4.27) and

the stress at a node due to adjacent and more distant segments is determined

in dislocation dynamics within the approximation of linear elasticity theory.

Force arising from core energy (section 4.4) can also be included. The com-

putation involved is non-trivial and several methods have been developed to

provide computational efficiency (see Bulatov and Cai (2006) in Further

Reading). The dislocation will want to change its shape if the force on a

node is unbalanced. One way of allowing for this is to give the node a veloc-

ity which is proportional to the force and inversely proportional to a drag

coefficient, as in equation (3.5). Realism can be introduced by setting the

drag coefficient for climb (in response to a force component out of the glide

plane) to be much larger than that for glide, and allowing the coefficient for

glide to vary with dislocation line direction between the edge and screw
orientations. The effects of temperature can also be incorporated with a
temperature-dependent drag coefficient and by probability-determined wait-

ing times for thermally-activated processes (section 10.2).

The other important issue is concerned with the density of nodes that define
the dislocation line. Computational efficiency requires the number of nodes
in the system to be as small as possible, but accurate representation of the line
shape is achieved if the nodal density is large. It is clear from Fig. 2.19 that
the density needs to be high in regions where the line curvature is strong and
that it can be low when the curvature is small. Thus, the computer code has
to be able to add and remove nodes in response to shape changes of disloca-
tions during a simulation. Furthermore, segments on the same or different dis-
locations can react to either annihilate or form segments with a different
Burgers vector, and again nodes have to be added or removed.

In some respects, dislocation dynamics is similar to molecular dynamics in
that objects (atoms or nodes) move in a chosen time-step according to the
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(a)

FIGURE 2.20

(@) Initial dislocation arrangement for the DD simulation of a molybdenum single crystal under
applied uniaxial strain. (b) Dislocation microstructure when the strain reaches 0.3%. (From Bulatov
and Cai (2006), Computer Simulations of Dislocations, Oxford University Press. With permission from
Oxford University Press (www.oup.co.uk).

force on them. However, dislocation dynamics has more complexity. First,
the response of a node depends on the direction of the force on it. Second,
the number of atoms is constant in molecular dynamics, whereas the chang-
ing number of nodes in dislocation dynamics requires that the inventory of
nodes, nodal coordinates and Burgers vectors be updated after every time-
step. The choice of boundary conditions can also be problematic. Articles
listed under Further Reading provide more detail.

Dislocation dynamics has been applied to situations where either a few or
many dislocations are involved. Interactions between two dislocations that
are important in work hardening (section 10.8) provide an example of the
former. As an example of the latter, Fig. 2.20 shows the dislocation arrange-
ment in a simulation of a tensile test on a single crystal of molybdenum, a
body-centered cubic metal. The model has axes in <100> directions and
size 10 X 10X 10 pm’. The initial dislocation arrangement shown in
Fig. 2.20(a) was chosen to consist of lines orientated preferentially along the
<111> screw orientations. Figure 2.20(b) shows the dislocations in the
computational cell after it had been strained by 3% in the x direction at a
rate of 1s™'. The large increase in dislocation density is apparent. The com-
puting demands of this simulation were such that it used a parallelized code
on computer clusters in which the number of processors increased from 16
to 512 as the dislocations, and therefore number of nodes, multiplied. The
plots of stress and dislocation density versus strain for this simulation are
described in section 10.8 (Fig. 10.26).
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CHAPTER 3

Movement of Dislocations

3.1 CONCEPT OF SLIP

There are two basic types of dislocation movement. Glide or conservative
motion occurs when the dislocation moves in the surface which contains both its
line and Burgers vector: a dislocation able to move in this way is glissile, one
which cannot is sessile. Climb or non-conservative motion occurs when the dislo-
cation moves out of the glide surface, and thus normal to the Burgers vector. Glide
of many dislocations results in slip, which is the most common manifesta-
tion of plastic deformation in crystalline solids. It can be envisaged as sliding
or successive displacement of one plane of atoms over another on so-called
slip planes. Discrete blocks of crystal between two slip planes remain undis-
torted as illustrated in Fig. 3.1. Further deformation occurs either by more
movement on existing slip planes or by the formation of new slip planes.

The slip planes and slip directions in a crystal have specific crystallographic
forms. The slip planes are normally the planes with the highest density of
atoms, i.e. those which are most widely spaced, and the direction of slip is
the direction in the slip plane corresponding to one of the shortest lattice
translation vectors. Often, this direction is one in which the atoms are most
closely spaced. It was seen in section 1.2 that the shortest lattice vectors are
1(111),4(110) and 4(1120) in the body-centered cubic, face-centered cubic
and close-packed hexagonal systems, respectively. Thus, in close-packed hex-
agonal crystals, slip often occurs on the (0001) basal plane in directions of
the type (1120) and in face-centered cubic metals on {111} planes in (110)
directions. In body-centered cubic metals the slip direction is the (111)
close-packed direction, but the slip plane is not well defined on a macro-
scopic scale. Microscopic evidence suggests that slip occurs on {112} and
{110} planes and that {110} slip is preferred at low temperatures. A slip
plane and a slip direction in the plane constitute a slip system. Face-centered
cubic crystals have four {111} planes with three (110) directions in each
(see Fig. 1.7), and therefore have twelve {111} (110) slip systems. 43

Introduction to Dislocations. www.lran-mavad.com
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Slip plane F
normal \

Slip direction

,,,,,

Slip plane | ..

Slip results in the formation of steps on the surface of the
crystal. These are readily detected if the surface is carefully
polished before plastic deformation. Figure 3.2 is an example
of slip in a 3.25 per cent silicon iron crystal; the line diagram
illustrates the appearance of a section through the crystal nor-
mal to the surface.

A characteristic shear stress is required for slip. Consider the
crystal illustrated in Fig. 3.1 which is being deformed in tension
by an applied force F along the cylindrical axis. If the cross-
sectional area is A the tensile stress parallel to F is 0 = F/A. The
force has a component F cos A in the slip direction, where A is
the angle between F and the slip direction. This force acts over
the slip surface which has an area A/cos ¢, where ¢ is the angle
between F and the normal to the slip plane. Thus the shear stress
T, resolved on the slip plane in the slip direction, is

FIGURE 3.1 T= gcos ¢ cos A (3.1)
lllustration of the geometry

of slip in a cylindrical The symbol 7 will be used throughout this book to denote the shear stress
crystal. Note that (¢ + \) resolved in this way. If F, is the tensile force required to start slip, the corre-
# 90° in general. sponding value of the shear stress 7. is called the critical resolved shear stress

(CRSS) for slip. It has been found in some crystals which deform on a single

FIGURE 3.2
(a) Straight slip bands on a single crystal of 3.25 per cent silicon iron. (From Hull, Proc. Roy. Soc. A274, 5, 1963.) (b) Sketch of a
section across the slip bands normal to surface shown in (a). Each band is made up of a large number of slip steps on closely

spaced parallel slip planes.

Surface

T\
Slip bands

(b)
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3.2 Dislocations and Slip a

slip system that 7. is independent of the orientation of the crystal. The quan-
tity cos ¢ cos A is known as the Schmid factor.

3.2 DISLOCATIONS AND SLIP

In Section 1.4 it was shown that the theoretical shear stress for slip is many
times greater than the experimentally observed stress, i.e. 7.. The low value
of 7. can be accounted for by the movement of dislocations. Consider the
edge dislocation represented in Fig. 1.18. This could be formed in a different
way to that described in Chapter 1, as follows: cut a slot along AEFD in the
crystal shown in Fig. 3.3 and displace the top surface of the cut AEFD one
lattice spacing over the bottom surface in the direction AB. An extra
half-plane EFGH and a dislocation line FE are formed and the distortion
produced is identical to that of Fig. 1.18. Although it is emphasized that dis-
locations are not formed in this way in practice, this approach demonstrates
that the dislocation can be defined as the boundary between the slipped and
unslipped parts of the crystal. Apart from the immediate region around the dis-
location core FE, the atoms across AEFD are in perfect registry. The distortion
due to the dislocations in Figs 1.18 and 3.3 has been described by giving all
points on one side of an imagined cut — ABCD in Fig. 1.15 and AEFD in
Fig. 3.3 — the same displacement relative to points on the other side; this
displacement is the Burgers vector (section 1.4). These defects are Volterra
dislocations, named after the Italian mathematician who first considered
such distortions. More general forms arising from variable displacements are
possible in principle, but are not treated here.

Only a relatively small applied stress is required to move the dislocation
along the plane ABCD of the crystal in the way demonstrated in Fig. 3.4.
This can be understood from the following argument. Well away from the
dislocation, the atom spacings are close to the perfect crystal values, and a

=

e

(a)

FIGURE 3.3
Formation of a pure edge dislocation FE.
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m CHAPTER 3: Movement of Dislocations
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FIGURE 3.4

Movement of an edge dislocation: the arrows indicate the applied shear stress.

shear stress as high as the theoretical value of equation (1.5) would be
required to slide them all past each other at the same time. Near the disloca-
tion line itself, some atom spacings are far from the ideal values, and small
relative changes in position of only a few atoms are required for the disloca-
tion to move. For example, a small shift of atom 1 relative to atoms 2 and 3
in Fig. 3.4(a) effectively moves the extra half-plane from x to y (Fig. 3.4(b)),
and this process is repeated as the dislocation continues to glide (Figs 3.4(c),
(d)). The applied stress required to overcome the lattice resistance to the
movement of the dislocation is the Peierls—Nabarro stress (see Chapter 10)
and is much smaller than the theoretical shear stress of a perfect crystal.

Figure 3.4 demonstrates why the Burgers vector is the most important param-
eter of a dislocation. Two neighboring atoms (say 1 and 3) on sites adjacent
across the slip plane are displaced relative to each other by the Burgers vector
when the dislocation glides past. Thus, the slip direction (see Fig. 3.1) is neces-
sarily always parallel to the Burgers vector of the dislocation responsible for slip. The
glide of one dislocation across the slip plane to the surface of the crystal pro-
duces a surface step equal to the Burgers vector. Each surface step produced
by a slip band in Fig. 3.2 must have been produced by the glide of many
thousands of dislocations, each contributing a step (equal to the Burgers
vector) to the overall step. The plastic shear strain in the slip direction result-
ing from dislocation movement is derived in section 3.9.

3.3 THE SLIP PLANE

In Fig. 3.3 the edge dislocation has moved in the plane ABCD which is the slip
plane. This is uniquely defined as the plane which contains both the line and the
Burgers vector of the dislocation. The glide of an edge dislocation is limited,
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therefore, to a specific plane. The movement of a
screw dislocation, for example from AA’ to BB’ in
Fig. 3.5, can also be envisaged to take place in a
slip plane, i.e. LMNO, and a slip step is formed.
However, the line of the screw dislocation and
the Burgers vector do not define a unique plane
and the glide of the dislocation is not restricted

3.3 The Slip Plane

to a specific plane. It will be noted that the dis- Burgers vector

placement of atoms and hence the slip step asso-
ciated with the movement of a screw dislocation
is parallel to the dislocation line, for that is the
direction of its Burgers vector. This can be dem-
onstrated further by considering a plan view of
the atoms above and below a slip plane contain-
ing a screw dislocation (Fig. 3.6). Movement of
the screw dislocation produces a displacement b
parallel to the dislocation line.

FIGURE 3.5

to BB’ by slip.

The direction in which a dislocation glides
under stress can be determined by physical rea-
soning. Consider material under an applied
shear stress (Fig. 3.7(a)) so that it deforms plas-
tically by glide in the manner indicated in
Fig. 3.7(b). From the description of section 3.2,
a dislocation responsible for this deformation
must have its Burgers vector in the direction shown. It is seen from Figs 3.7(c)
and (d) that a positive edge dislocation glides to the left in order that the extra
half-plane produces a step on the left-hand face as indicated, whereas a nega-
tive edge dislocation glides to the right. A right-handed screw glides towards
the front in order to extend the surface step in the required manner (Fig. 3.7
(e)), whereas a left-handed screw glides towards the back (Fig. 3.7(f)). These
observations demonstrate that (a) dislocations of opposite sign glide in opposite
directions under the same stress, as expected of physical opposites, and (b) for
dislocation glide a shear stress must act on the slip plane in the direction of the
Burgers vector, irrespective of the direction of the dislocation line.

In the examples illustrated in Figs 3.3, 3.5 and 3.7 it has been assumed that
the moving dislocations remain straight. However, dislocations are generally
bent and irregular, particularly after plastic deformation, as can be seen in
the electron micrographs presented throughout this book. A more general
shape of a dislocation is shown in Fig. 3.8(a). The boundary separating the
slipped and unslipped regions of the crystal is curved, i.e. the dislocation is
curved, but the Burgers vector is the same all along its length. It follows that
at point E the dislocation line is normal to the vector and is therefore pure
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Formation and then movement of a pure screw dislocation AA
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>

xis of screw
islocation

FIGURE 3.6
Arrangement of atoms
around a screw dislocation.
Open circles above plane
of diagram, filled circles
below (for right-handed
SCrew).
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Plastic deformation by glide of edge and screw dislocations under the applied shear stress shown.

edge and at S is parallel to the vector and is pure screw. The remainder of the
dislocation (M) has a mixed edge and screw character. The Burgers vector b of
a mixed dislocation, XY in Fig. 3.8(b), can be resolved into two components
by regarding the dislocation as two coincident dislocations; a pure edge with
vector b, of length b sin 6 at right angles to XY, and a pure screw with vector
b, of length b cos 6 parallel to XY:

b, +b,=b (3.2)

3.4 CROSS SLIP

In general, screw dislocations tend to move in certain crystallographic planes
(see, for example, dissociation of perfect dislocations, section 5.3). Thus, in
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(a) Burgers vector (b)

FIGURE 3.8
Mixed dislocations. (a) The curved dislocation SME is pure edge at £ and pure screw at S. (b) Burgers
vector b of dislocation XY'is resolved into a pure edge component by and a pure screw component hy.

[1‘01] dislocation
(111

FIGURE 3.9

Sequence of events (), (b), () in cross slip in a face-centered cubic metal. The [11 1] direction is
common to the (111) and (11 1) close-packed planes. A screw dislocation at Sis free to glide in either
of these planes. Cross slip produces a non-planar slip surface. Double cross slip is shown in (d).

face-centered cubic metals the screw dislocations move in {111} type planes,
but can switch from one {111} type plane to another if it contains the direc-
tion of b. This process, known as cross slip, is illustrated in Fig. 3.9. In Fig. 3.9
(a) a dislocation line, Burgers vector b = %[TOI], is gliding to the left in the
(111) plane under the action of an applied shear stress. The only other {111}
plane containing this slip vector is (111). Suppose that as the loop expands
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FIGURE 3.10

Cross slip on the polished
surface of a single crystal
of 3.25 per cent silicon
iron.

the local stress field which is producing dis-
location motion changes so that motion is
preferred on (111) instead of (111). Unlike
edge and mixed dislocations, which have a
unique glide plane, a pure screw segment is
free to move in both (111) and (111) planes
and so cross slip can occur at S (Fig. 3.9(b)).
Glide of the dislocation then occurs on the
(111) plane (Fig. 3.9(c)). Double cross slip is
illustrated in Fig. 3.9(d).

The cross slip of moving dislocations is
readily seen by transmission electron
microscopy because a moving dislocation
leaves a track which slowly fades. In body-
centered cubic metals the slip plane is less
well defined and the screw dislocation with b =73(111) can glide on three
{110} planes and three {112} planes. Slip often wanders from one plane to
another producing wavy slip lines on prepolished surfaces. An example of
the result of cross slip is shown in Fig. 3.10.

3.5 VELOCITY OF DISLOCATIONS

Dislocations move by glide at velocities which depend on the applied shear
stress, purity of crystal, temperature and type of dislocation. A direct method
of measuring dislocation velocity was developed by Johnston and Gilman
using etch pits to reveal the position of dislocations at different stages of
deformation, as illustrated in Fig. 2.13. A crystal containing freshly intro-
duced dislocations, usually produced by lightly deforming the surface, is
subjected to a constant stress pulse for a given time. From the positions of
the dislocations before and after the stress pulse, the distance each disloca-
tion has moved, and hence the average dislocation velocity, can be deter-
mined. By repeating the experiment for different times and stress levels the
velocity can be determined as a function of stress as shown in Fig. 3.11(a)
for lithium fluoride. The dislocation velocity was measured over 12 orders of
magnitude and was a very sensitive function of the resolved shear stress. In
the range of velocities between 10~° and 10> ms™' the logarithm of the
velocity varies linearly with the logarithm of the applied stress, thus

v <l>n (3.3)
To

where v is velocity, 7 is the applied shear stress resolved in the slip plane, 7 is
the shear stress for v =1m s~ ', nis a constant and was found experimentally
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3.5 Velocity of Dislocations ﬂ
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FIGURE 3.11

(a) Stress dependence of the velocity of edge and screw dislocations in lithium fluoride. (From Johnston and Gilman, J. Appl. Phys.
30, 129, 1959, (b) Stress dependence of the velocity of edge dislocations in 3.25 per cent silicon iron at four temperatures. (After
Stein and Low, J. Appl. Phys. 31, 362, 1960.)

to be ~ 25 for lithium fluoride. It must be emphasized that equation (3.3) is
purely empirical and implies no physical interpretation of the mechanism of
dislocation motion.

The velocity of edge and screw components was measured independently and
in the low velocity range edge dislocations moved 50 times faster than screw
dislocations. There is a critical stress, which represents the onset of plastic
deformation, required to start the dislocations moving. The effect of tem-
perature on dislocation velocity is illustrated in Fig. 3.11(b) for results
obtained by Stein and Low who studied 3.25 per cent silicon iron by the same
method. The dislocation velocities were only measured below 10™* m s~ ' and
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10°

therefore the curves do not show the bending over
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101 >

L found in lithium fluoride. The curves are of the
same form as equation (3.3). At 293 K, n~35,

LiF (a) and at 78 K, n~44. 7, increased with decreasing
4 temperature.
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The stress dependence of dislocation velocity var-
/ ies significantly from one material to another, as
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velocity of transverse shear-wave propagation is
the limiting velocity for uniform dislocation
motion. However, damping forces increasingly

Ni Si W illustrated in Fig. 3.12. For a given material, the
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oppose motion when the velocity increases above

-

{ LiF (b)

10—11

about 10 2 of this limit, and thus 7 in equation

102 107"

Applied shear stress, MNm™

FIGURE 3.12

The dependence of
dislocation velocity on
applied shear stress. The
data are for 20°C except
Ge (450°C) and Si (850°C).
(After Haasen, Physical
Metallurgy, Cambridge
University Press.)

(3.3) decreases rapidly in this range. Studies on
face-centered cubic and hexagonal close-packed
crystals have shown that at the critical resolved
shear stress for macroscopic slip, dislocation
velocity is approximately 1 ms~' (~107> of shear wave velocity) and
satisfies

10 101 102 108

v=Ar" (3.4)

where A is a material constant, m is approximately 1 at 300 K in pure crys-
tals, and increases to the range 2—5 with alloying and to 4—12 at 77 K. This
form of stress-dependence is used in the dislocation dynamics computer
simulations described in section 2.4.

When m = 1, equation (3.4) is usually written as

v= %T (3.5)
where B is the drag (or friction) coefficient. In the velocity range where this
applies (~0.1 to 1000 ms '), B is dominated by scattering of lattice vibra-
tions (phonons). These are less numerous at low temperature and so B
decreases. Effects due to phonon damping and the limitation of shear wave
velocity have been studied by molecular dynamics computer simulation of
dislocation glide (section 2.4). Velocity is plotted against 7 for an edge dislo-
cation gliding on a prism plane of zirconium (hexagonal close-packed) at
three temperatures in Fig. 3.13(a) and on a {111} plane of nickel (face-
centered cubic) with aluminum atoms in solution at 300 K in Fig. 3.13(b). B
is generally found to be of the order of 10 pPa s in such simulations.
Additional effects such as thermoelastic dissipation and radiative emission of
phonons can be important in other materials.
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Dislocation velocity versus applied shear stress obtained by computer simulation of an edge dislocation. (a) Pure zirconium at three
temperatures. (From Khater and Bacon, Acta Mater. 58 2978, 2010. Copyright (2010) with permission from Elsevier. (o) Pure nickel
and Ni-Al solid solutions at 300 K. (With permission from Rodary, Rodney, Proville, Brechet and Martin, Phys. Rev. B 70, 05411,
2004. Copyright (2004) by the American Physical Society.)
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Positive and negative climb of an edge dislocation. Arrows indicate sense of vacancy motion. In (b) the dislocation is centered on the
row of atoms A normal to the plane of the diagram. If the vacancies in the crystal diffuse to the dislocation at A the dislocation will
climb in a positive sense as in (a). If vacancies are generated at the dislocation line and then diffuse away the dislocation will climb in

the negative sense as in (C).

3.6 CLIMB

At low temperatures where diffusion is difficult, and in the absence of a
non-equilibrium concentration of point defects, the movement of disloca-
tions is restricted almost entirely to glide. However, at higher temperatures
an edge dislocation can move out of its slip plane by a process called climb.
Consider the diagram of an edge dislocation in Fig. 3.14. If the row of atoms
A normal to the plane of the diagram is removed, the dislocation line moves
up one atom spacing out of its original slip plane; this is called positive climb.
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FIGURE 3.15

Similarly, if a row of atoms is introduced below
the extra half-plane the dislocation line moves
down one atom spacing, negative climb. Positive
climb can occur by either diffusion of vacancies to
A or the formation of a self-interstitial atom at A
and its diffusion away. Negative climb can occur
either by an interstitial atom diffusing to A or the
formation of a vacancy at A and its diffusion away.

Displacement of a segment of line | by s. The area of the More generally, if a small segment 1 of line under-

shaded element is || X s|.

Dislocation

FIGURE 3.16
A pair of jogs on an edge
dislocation.

goes a small displacement s (Fig. 3.15), the local
change in volume is

dV=b-1Xs=bxlIs (3.6)

Extra half-plane

for during the movement the two sides of the area
element 1 X's are displaced by b relative to each
other. The glide plane of the element is by defini-
tion perpendicular to b X1, and so dV is zero
when either s is perpendicular to b X1 or b X1=0,
which means the element is pure screw. In both
cases s lies in the glide plane and this is the condi-
tion for glide (conservative motion) discussed pre-
viously. For other cases, volume is not conserved
(dV # 0) and the motion is climb, the number of
point defects required being dV/f2, where {2 is the
volume per atom. The mass transport involved

occurs by diffusion and therefore climb requires thermal activation. The

most common climb processes involve the diffusion of vacancies either

towards or away from the dislocation.

It has been implied above that a complete row of atoms is removed simulta-
neously, whereas in practice individual vacancies or small clusters of vacancies
diffuse to the dislocation. The effect of this is illustrated in Fig. 3.16 which
shows climb of a short section of a dislocation line resulting in the formation
of two steps called jogs. Both positive and negative climb proceeds by the nucle-
ation and motion of jogs. Conversely, jogs are sources and sinks for vacancies.

Jogs are steps on the dislocation which move it from one atomic slip plane
to another. Steps which displace it on the same slip plane are called kinks.
The two are distinguished in Fig. 3.17. Jogs and kinks are short elements of
dislocation with the same Burgers vector as the line on which they lie, and
the usual rules apply for their conservative and non-conservative movement.
Thus, the kink, having the same slip plane as the dislocation line, does not
impede glide of the line. (In fact, it may assist it — section 10.3.) Similarly,
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the jog on an edge dislocation (Fig. 3.17(c))

does not affect glide. The jog on a screw dis-
location (Fig. 3.17(d)) has edge character, /

however, and can only glide along the line;
movement at right angles to the Burgers vec-
tor requires climb. This impedes glide of the
screw and results in point defect production @

during slip (Chapter 7). Since E]‘r is much Burgers vector b

larger than E} in metals (section 1.3), it is —

very difficult for interstitial-producing jogs
to move perpendicular to the line and

vacancy production predominates.

The jogs described have a height of one lat-
tice spacing and a characteristic energy
Ei~1eV (0.16aJ) resulting from the
increase in dislocation line length (section
7.2). They are produced extensively during
plastic deformation by the intersection of dislocations (see Chapter 7), and
exist even in well-annealed crystals, for there is a thermodynamic equilib-
rium number of jogs (thermal jogs) per unit length of dislocation given by

(c)

nj = noexp( — E;/kT) (3.7)

where 1, is the number of atom sites per unit length of dislocation (com-
pare with equation (1.3)). nj/n, is of the order of 10~ ° at T= 1000 K and
10~ at T=300 K.

The climb of dislocations by jog formation and migration is analogous to
crystal growth by surface step transport. There are two possible mechanisms.
In one, a pre-existing single jog (as in Fig. 3.17(c)), or a jog formed at a site
without the need for thermal nucleation, migrates along the line by vacancy
emission or absorption. This involves no change in dislocation length and
the activation energy for jog diffusion is

(Ef +E,) =Eq (3.8)

where E! is the vacancy migration energy and E, the activation energy for
self-diffusion. In the other, thermal jogs are nucleated on an otherwise
straight line and the jog migration energy is (E; + E;). In most situations the
first process dominates. The effective activation energy in some circum-
stances can be less than one half the value of E; measured in the bulk, for
the crystal is distorted at atom sites close to the dislocation line itself and E,
is smaller there. The process of mass transport occurring along the line,
rather than to or from it, is known as pipe diffusion, and an example is
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FIGURE 3.17

(@), (b) Kinks in edge and
screw dislocations. (c), (d)
Jogs in edge and screw
dislocations. The slip
planes are shaded.
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FIGURE 3.18

Glide plane and glide
cylinder for dislocation
loops with Burgers vector
(@) in the loop plane and (b)
inclined to the loop plane.

discussed in section 3.8. Although jog diffusion in thermal equilibrium
occurs at a rate proportional to exp( — E4/kT), or a rate with E; modified
as just discussed, the actual rate of climb of the dislocation depends also
on the forces acting on it. Several factors are involved, as discussed in
section 4.7.

Pure screw dislocations have no extra half-plane and in principle cannot
climb. However, a small edge component or a jog on a screw dislocation
can provide a site for the start of climb. Two examples will serve to illustrate
the climb process in both edge and predominantly screw dislocations.

3.7 EXPERIMENTAL OBSERVATION OF CLIMB

Prismatic Dislocation Loops

The shaded plane bounded by the curved line SME in Fig. 3.8 contains the
Burgers vector b and is therefore the slip plane of the dislocation (section
3.3). If a dislocation forms a loop in a plane and b lies in that plane
(Fig. 3.18(a)), the plane is the slip plane and the loop can expand or shrink
by glide, depending on the forces acting on it (section 4.5). When the
Burgers vector is not in the plane of the loop, the glide surface defined by
the dislocation line and its Burgers vector is a cylindrical surface (Fig. 3.18
(b)). The dislocation is called a prismatic dislocation. It follows that the dislo-
cation can only move conservatively, i.e. by glide, along the cylindrical sur-
face and if the loop expands or shrinks climb must be occurring.

Numerous examples of prismatic loops have been observed using transmis-
sion electron microscopy. They can be formed in the following way. The
supersaturation (excess concentration) of vacancies resulting from either
rapid quenching from a high temperature (see section 1.3) or atomic displa-
cements produced by irradiation with energetic particles may precipitate
out in the form of a disc on a close-packed plane. If the disc is large enough,
it is energetically favorable for it
to collapse to produce a disloca-
tion loop (Fig. 3.19). The Burgers

Glide cylinder

A\

or prism

vector of the loop is normal to the
plane of the loop, so that an edge
dislocation has been formed. In
the presence of an excess concen-
tration of vacancies the loop

Glide plane

(@)

will expand by positive climb.
Alternatively, at high temperature
when the equilibrium concentra-
tion of vacancies in the crystal is

(b)
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3.7 Experimental Observation of Climb [ ¥/
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Formation of a prismatic dislocation loop. (a) Represents a crystal with a large non-equilibrium concentration of vacancies. In (b) the
vacancies have collected on a close-packed plane and in (c) the disc has collapsed to form an edge dislocation loop. (d) Loop formed

by a platelet of self-interstitial atoms.

large (section 1.3) or if there is a nearby
sink for vacancies, the loop will emit
vacancies and shrink by negative climb.
Figure 3.20 shows an example of the
latter. The dislocation loops were
formed in a thin sheet of aluminum by
quenching. The sheet was thinned to
about 100 nm and examined by trans-
mission electron microscopy. The sur-
faces of the sheet are very effective sinks
for vacancies and when the foil was
heated in the microscope to allow ther-
mal activation to assist in the formation
and diffusion of vacancies, the stacking-
fault and line-tension forces (section
4.7) acting on the dislocations induced
the loops to shrink and disappear.

In a similar fashion, platelets of self-interstitial atoms can form dislocations
in irradiated materials (Fig. 3.19(d)) and can grow by absorption of self-
interstitials created by radiation damage.

Helical Dislocations

Dislocations in the form of a long spiral have been observed in crystals
which have been thermally treated to produce climb conditions. Thus, in
Fig. 3.21 the helical dislocation in CaF, was formed by heating the crystal to
a high temperature. A mechanism for the formation of helical dislocations is
as follows. The dislocation AB, in Fig. 3.22, is pinned or locked at A and B,
and is partly edge and partly screw in character. Motion of the dislocation in
the plane ABA’ corresponds to glide since this plane contains the line and
the Burgers vector. Motion at right angles to this plane corresponds to climb.
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FIGURE 3.20

Electron transmission
photographic sequence
showing the shrinkage of
1(111) stacking fault
dislocation loops in
aluminum by negative
climb. The foil was
annealed at 102°C for 0,
213, 793 and 1301 min,
respectively. (From Tartour
and Washburn, Phil. Mag.
18, 1257, 1968.)
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An excess of vacancies at a suitable temperature will cause the dislocation to

climb. The configuration of the dislocation after a certain amount of climb

is shown in Fig. 3.22(b). The dislocation now lies on the surface of a cylin-

der whose axis is parallel to the Burgers vector (i.e. prismatic dislocation)
FIGURE 3.21 and it can glide on the surface of the cylinder. Further climb displaces each
Spiral or helical dislocation ~ part of the dislocation in a direction normal to the surface of the cylinder.
in CaF, (fluorite) revealed The dislocation will change into a double spiral by spiraling around node
by the decoration points A and B, as shown in Fig. 3.22(c). The radius of the spiral is smallest
technique. (After Bontinck  at the nodes, since, for a given number of vacancies, the angle of rotation is
and Amelinckx, Phil. Mag.  greater there. If A'B is small compared with AA’, combination of prismatic
2, 94,1957) glide and climb will result in the formation of
a uniformly spaced spiral. The Burgers vector
of the helical dislocations in Figs 3.21 and
3.22 must therefore lie along the axis of the
helix.

The helix consists essentially of a screw disloca-
tion parallel to the axis of the helix and a set of
prismatic loops. This interpretation is made
more apparent by considering the interaction
between a screw dislocation and a dislocation
loop with the same Burgers vector. Figure 3.23
illustrates how the dislocation acquires a heli-
cal turn by absorption of the loop. The direc-
tion of the Burgers vector and positive line

PN PN
(a) (b) (c)

FIGURE 3.22

Formation of a helical dislocation by climb of a straight dislocation with a screw component. (a) A straight dislocation line AB and its
projection in the plane PN which is normal to the Burgers vector b and passes through B. A" is the projection of A on to plane PN. (b)
Change produced in the dislocation AB by climb. AB is now curved and lies on a cylinder whose axis is parallel to b. The dislocation
can glide on this cylinder. The area F is proportional to the amount of material added or lost in climb. (c) Helical dislocation produced
after further climb. The projection of this dislocation on to PN is the double spiral shown in the diagram. (After Amelinckx, Bontinck,
Dekeyser and Seitz, Phil. Mag. 2, 355, 1957.)
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3.9 Plastic Strain due to Dislocation Movement a

sense of the dislocation and loop are indicated by
arrows. Application of the RH/FS convention (sec-
tion 1.4) shows that the dislocation is a right-
handed screw and the loop has interstitial nature
in (a) and vacancy nature in (b). The sense of the
resulting helical turn is different in (a) and (b). It
would be reversed for a left-handed screw.

3.8 CONSERVATIVE CLIMB

From the description of the basic types of disloca-
tion movement at the beginning of this chapter,
the heading of this section appears to be a contra-
diction. However, if a prismatic loop (Fig. 3.19)
moves in its plane without shrinking or expand-
ing at temperatures too low for bulk diffusion of
point defects, it follows that climb is occurring
without net loss or gain of vacancies or self-
interstitial atoms. An example is seen in Fig. 3.24.
Loop translation occurs by the transfer of vacancies
around the loop by pipe diffusion, the vacancies
producing positive climb at one side of the loop
and negative climb at the other side. The process is
called conservative climb.

3.9 PLASTIC STRAIN DUE TO
DISLOCATION MOVEMENT

It is implicit in the description of dislocation
behavior presented in preceding sections that dis-
location movement, usually under the influence
of an externally-applied load, results in plastic
strain. This is in addition to the elastic strain,
which is simply related to the external stress by
Hooke’s law (Chapter 4). The relation between
plastic strain and the applied stress is more com-
plicated and depends on factors such as tempera-
ture, applied strain rate and, in particular, the
microstructure of the material: these aspects are

b b

(a) Q plus /.b equals 79/
y b
(b) Q plus ’«b equals ﬁb

Loop + Screw dislocation = Helical turn

FIGURE 3.23

Schematic illustration of a right-handed screw dislocation
acquiring a helical turn by reaction with a dislocation loop with
the same Burgers vector: (a) interstitial loop; (b) vacancy loop.

FIGURE 3.24

Sequence of electron micrographs showing the conservative
climb motion of a dislocation loop, with a Burgers vector normal
to the plane of the loop, due to its interaction with an edge
dislocation. (From Kroupa and Price, Phil Mag. 6, 243, 1961.)

discussed further in Chapter 10. There is, however, a simple relationship
(the Orowan equation) between the plastic strain and the dislocation density
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dgo umnigo g Ghgauisih zapo



m CHAPTER 3: Movement of Dislocations
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FIGURE 3.25

(a) Edge dislocations in a crystal subjected to an external shear stress resolved for slip. (b) Plastic
displacement D produced by glide of the dislocations. Dislocation / has moved a distance x; as shown.

defined as in section 1.4. It is based on the fact that when a dislocation
moves, two atoms on sites adjacent across the plane of motion are displaced
relative to each other by the Burgers vector b (section 3.2).

The relationship for slip is derived first. Consider a crystal of volume hld con-
taining for simplicity straight edge dislocations (Fig. 3.25(a)). Under a high
enough applied shear stress acting on the slip plane in the direction of b, as
shown, the dislocations will glide, positive ones to the right, negative ones
to the left. The top surface of the sample is therefore displaced plastically by
D relative to the bottom surface as demonstrated in Fig. 3.25(b). If a disloca-
tion moves completely across the slip plane through the distance d, it contri-
butes b to the total displacement D. Since b is small in comparison to d and
h, the contribution made by a dislocation which moves a distance x; may be
taken as the fraction (x;/d) of b. Thus, if the number of dislocations which
move is N, the total displacement is

| <

N
dz (3.9)

and the macroscopic plastic shear strain ¢ is given by

N
Z (3.10)

FID
:|w

This can be simplified by noting that the average distance moved by a dislo-
cation X is
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g d
X= N;xi (3.11)
and that the density of mobile dislocations p,, is 7]
(Nl/hid). Hence —
e=bp,x (3.12) h
i
The strain rate is therefore —
._de __
&= =bp,,v (3.13) l
(a) load

where v is the average dislocation velocity. The same
relationships hold for screw and mixed dislocations.
Also, since the average area of slip plane swept by a
dislocation A equals Ix, an alternative to equation
(3.12) is

FIGURE 3.26

elongation H.

e =bnA (3.14)

where n is the number of lines per unit volume. It is emphasized that p,,
appearing in the above equations is the mobile dislocation density, for dislo-
cations which do not move do not contribute to the plastic strain.

Climb under an external tensile load is shown schematically in Fig. 3.26.
When an edge dislocation climbs, an extra plane of thickness b is inserted
into, or removed from, the crystal in the area over which the line moves. As
in the analysis for slip, if a dislocation moves through distance x; it contri-
butes b(x;/d) to the plastic displacement H of the external surface. It is there-
fore easy to show that the total plastic tensile strain (H/h) parallel to the
Burgers vector and the strain rate are given by equations (3.12) and (3.13)
respectively. The same relations also hold for climb of mixed dislocations,
except that b is then the magnitude of the edge component of the Burgers
vector.

FURTHER READING

The books and paper listed under ‘Dislocations’ at the end of Chapter 1 pro-
vide excellent sources of further information.

Balluffi RW, Granato AV: Dislocations, vacancies and interstitials. In Nabarro FRN, editor:
Dislocations in solids, vol 4, 1979, North-Holland, p. 1.

Cai W, Bulatov V, Chang V, Li JJ, Yip S: Dislocation core effects on mobility. In Nabarro FRN,
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Gilman JJ: Micromechanics of flow in solids, 1969, McGraw-Hill.
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CHAPTER 4

Elastic Properties of Dislocations

4.1 INTRODUCTION

The atoms in a crystal containing a dislocation are displaced from their
perfect lattice sites, and the resulting distortion produces a stress field in the
crystal around the dislocation. The dislocation is therefore a source of internal
stress in the crystal. For example, consider the edge dislocation in Fig. 1.18
(b). The region above the slip plane contains the extra half-plane forced
between the normal lattice planes, and is in compression: the region below is
in tension. The stresses and strains in the bulk of the crystal are sufficiently
small for conventional elasticity theory to be applied to obtain them. This
approach only ceases to be valid at positions very close to the center of
the dislocation. Although most crystalline solids are elastically anisotropic,
i.e. their elastic properties are different in different crystallographic directions,
it is much simpler to use isotropic elasticity theory. This still results in a good
approximation in most cases. From a knowledge of the elastic field, the
energy of the dislocation, the force it exerts on other dislocations, its energy
of interaction with point defects, and other important characteristics, can be
obtained. The elastic field produced by a dislocation is not affected by the
application of stress from external sources: the total stress on an element
within the body is the superposition of the internal and external stresses.

4.2 ELEMENTS OF ELASTICITY THEORY

The displacement of a point in a strained body from its position in the
unstrained state is represented by the vector

u = [uy, Uy, U] (4.1)
The components u,, u, u. represent projections of u on the x, y, z axes, as
shown in Fig. 4.1. In linear elasticity, the nine components of strain are 63
Introduction to Dislocations. www.lran-mavad.com
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z4 given in terms of the first derivatives of the displacement
components thus:
. _ Oty
ey = alyy (4.2)
. o
Uy Sy 0z
/ ----------------- e and
X
1 {(ou, ou,
FIGURE 4.1 S A
Displacement of Pto P’ by
displacement vector u. 1 ({0u,  Ouy
Cx == S | Ao + e 4.3)
Cxy = €y = % % + %

The magnitude of these components is « 1. Partial differentials are used
because in general each displacement component is a function of position
(x, 7, z). The three strains defined in (4.2) are the normal strains. They repre-
sent the fractional change in length of elements parallel to the x, y and z axes
respectively, e.g. the length I, of an element in the x direction is changed to
I. (1 +ey). The six components defined in (4.3) are the shear strains, and
they also have simple physical meaning. This is demonstrated by e,, in
Fig. 4.2(a), in which a small area element ABCD in the xy plane has been
strained to the shape AB'C'D’ without change of area. The angle between the

Y c’ A
D | D c
a_“X 2e
3y z %
au,
Ly
ox B’
A B x —
(a) (b)
FIGURE 4.2

(a) Pure shear and (b) simple shear of an area element in the xy plane.
www.lran-mavad.com
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4.2 Elements of Elasticity Theory ﬂ

sides AB and AD initially parallel to x and y respectively has decreased by
2e,,. By rotating, but not deforming, the element as in Fig. 4.2(b), it is seen
that the element has undergone a simple shear. The simple shear strain often
used in engineering practice is 2e,y, as indicated.

The volume V of a small volume element is changed by strain to
(V+AV)=V(1 +ex)(1 +e,)(1 +e). The fractional change in volume A,
known as the dilatation, is therefore

A=AV/V =(ex tey+ez) (4.4)
A is independent of the orientation of the axes x, y, z.

In elasticity theory, an element of volume experiences forces via stresses
applied to its surface by the surrounding material. Stress is the force per unit
area of surface. A complete description of the stresses acting therefore
requires not only specification of the magnitude and direction of the force
but also of the orientation of the surface, for as the orientation changes so,
in general, does the force. Consequently, nine components must be defined
to specify the state of stress. They are shown with reference to an elemental
cube aligned with the x, y, z axes in Fig. 4.3(a). The component o;;, where i
and j can be x, y or z, is defined as the force per unit area exerted in the +i
direction on a face with outward normal in the +j direction by the material
outside upon the material inside. For a face with outward normal in the —j
direction, i.e. the bottom and back faces shown in Fig. 4.3(b), o is the
force per unit area exerted in the —i direction. For example, o,. acts in
the positive y direction on the top face and the negative y direction on the
bottom face.

The six components with i # j are the shear stresses. (As explained in section
3.1, it is customary in dislocation studies to represent the shear stress acting

V4 O,
I |
X‘Z/ O'Zy : /(jéx
O2zx G(yy - !Yi G,V: __T
Oyx 5 Oyy T E ¢(Szx
Oy bl VOt G
p g G ]
¢Gzz
(a) (b)
FIGURE 4.3

Components of stress acting on (a) the top and front faces and (b) the bottom and back faces of an
elemental cube.
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m CHAPTER 4: Elastic Properties of Dislocations

FIGURE 4.4
Components of stress in
cylindrical polar
coordinates.

on the slip plane in the slip direction of a crystal by the sym-
bol 7.) By considering moments of forces taken about x, y
and z axes placed through the center of the cube, it can be
shown that rotational equilibrium of the element, i.e. net
couple = 0, requires

Op =0z On=0x Ox=0p (4.5)

Thus, the order in which subscripts i and j is written is imma-
terial. The three remaining components oy, o, 0. are the
normal components. From the definition given above, a posi-
tive normal stress results in tension and a negative one in com-
pression. The effective pressure acting on a volume element is
therefore

p= _%(axx + Oyy +o0z) (4.6)

For some problems, it is more convenient to use cylindrical polar coordi-
nates (r, 6, z). The stresses are still defined as above, and are shown in
Fig. 4.4. The notation is easier to follow if the second subscript j is consid-
ered as referring to the face of the element having a constant value of the
coordinate j.

The relationship between stress and strain in linear elasticity is Hooke's Law,
in which each stress component is linearly proportional to each strain. For
isotropic solids, only two proportionality constants are required:

Oxxe = 2Gey + Mew + ey t )
oy =2Ge,, + Mex + ey + e)
0z = 2Gex, + Mey + eyt €z)
Oy =2Geyy, 0y, =2Gey, 0z = 2Gey,

(4.7)

X and G are the Lamé constants, but G is more commonly known as the
shear modulus. Other elastic constants are frequently used, the most useful
being Young's modulus, E, Poisson’s ratio, v, and bulk modulus, K. Under uniax-
ial, normal loading in the longitudinal direction, E is the ratio of longitudi-
nal stress to longitudinal strain and » is minus the ratio of lateral strain to
longitudinal strain. K is defined to be —p/A. Since only two material para-
meters are required in Hooke’s law, these constants are interrelated. For
example,

E=2G(1+v) v=X\/2(\+G) K=E/3(1 —2v) (4.8)

Typical values of E and v for metallic and ceramic solids lie in the ranges
40—600 GNm ™2 and 0.2—0.45 respectively.
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4.3 Stress Field of a Straight Dislocation

The internal energy of a body is increased by strain. The strain energy per
unit volume is one-half the product of stress times strain for each compo-
nent. Thus, for an element of volume dV, the elastic strain energy is

dEel = %dV Z Z 0ij€jj (4.9)

=Xz j=Xy.2

and similarly for polar coordinates.

4.3 STRESS FIELD OF A STRAIGHT DISLOCATION

Screw Dislocation

The elastic distortion around an infinitely-long, straight dislocation can be
represented in terms of a cylinder of elastic material. Consider the screw dis-
location AB shown in Fig. 4.5(a); the elastic cylinder in Fig. 4.5(b) has been
deformed to produce a similar distortion. A radial slit LMNO was cut in the
cylinder parallel to the z-axis and the cut surfaces displaced rigidly with
respect to each other by the distance b, the magnitude of the Burgers vector
of the screw dislocation, in the z-direction.

The elastic field in the dislocated cylinder can be found by direct inspection.
First, it is noted that there are no displacements in the x and y directions:

Uy =1, =0 (4.10)

(a)

FIGURE 4.5
(@) Screw dislocation AB formed in a crystal. (b) Elastic distortion of a cylindrical tube simulating the
distortion produced by the screw dislocation in (a).
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Elastic Properties of Dislocations

Secondly, the displacement in the z-direction increases uniformly from zero
to b as 6 increases from 0 to 27

bo _ italfl(y/x) (4.11)

uzi
£ 2 2w

It is then readily found from equations (4.2) and (4.3) that

Crx Ty T ey = ey =€, =0

b=, =—> Vv __ bsind
" = 47 (x2 +y?) a7 r (4.12)
O 4r(x24+92)  4m ot

From equations (4.7) and (4.12), the components of stress are

Oxx = Oy = Oz = Oy = 0 =0

Gb vy Gbsin 0
Cow = Gy = — —— =_
= = 2m (x7- + y2) 2 T (4.13)
Gb x Gbcos 0

27 (x2 +y?) 2T o7

The components in cylindrical polar coordinates (Fig. 4.4) take a simpler
form. Using the relations

Orp = axzcos. 0+ oysin 0 (4.14)
0p; = —0xSin 0 + o,,cos 0

and similarly for the shear strains, the only non-zero components are found

to be
Coz = €z = b
0z z0 anr
- (4.15)
00z = 0z0 = 7.
27r

The field exhibits complete radial symmetry and the cut LMNO can be made
on any radial plane § = constant. For a dislocation of opposite sign, i.e. a left-
handed screw, the signs of all the field components are reversed. The elastic
distortion contains no tensile or compressive components and consists of
pure shear: o, acts parallel to the z-axis in radial planes of constant § and
0g. acts in the fashion of a torque on planes normal to the axis (Fig. 4.4).

For a crystal of finite length the oy, torque results in a twist about the cylin-
der axis (Eshelby twist). An example is provided by growth of PbSe nanowires
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4.3 Stress Field of a Straight Dislocation m

(a) (b)

FIGURE 4.6

(a) Scanning electron micrograph of a branched nanowire with a twist (inset: high-resolution image). Sketch of a wire containing
an axial screw dislocation (b) without and (c) with branch wires. The end of the main wire is free to rotate and contains the surface
step that mediates growth, (From Zhu, Peng, Marshall, Barnett, Nix and Cui, Nature Nanotechnology 3, 477, 2008. Reprinted with
permission from Macmillan Publishers Ltd: copyright (2008).)

from vapor (Fig. 4.6). The main wire (50 um long) has a twist, as revealed
by the orientation of shorter branched nanowires that have grown perpen-
dicular to it (Fig. 4.6(a)). Growth of the main wire was mediated by the sur-
face step due to an axial screw dislocation (see section 2.3 and Fig. 2.10(c)),
which created the twist (Figs 4.6(b) and (c)).

The stresses and strains are proportional to 1/r and therefore diverge to
infinity as r— 0. Solids cannot withstand infinite stresses, and for this reason
the cylinder in Fig. 4.5 is shown as hollow with a hole of radius r,. Real crys-
tals are not hollow, of course, and so as the center of a dislocation in a crys-
tal is approached, elasticity theory ceases to be valid and a non-linear,
atomistic model must be used (see section 10.3). The region within which
the linear-elastic solution breaks down is called the core of the dislocation.
From equation (4.15) it is seen that the stress reaches the theoretical
limit (equation (1.5)) and the strain exceeds about 10% when r = b. A rea-
sonable value for the dislocation core radius ry therefore lies in the range b
to 4b, i.e. 1y = 1 nm in most cases.

Edge Dislocation

The stress field is more complex than that of a screw but can be represented
in an isotropic cylinder in a similar way. Considering the edge dislocation in
Fig. 4.7(a), the same elastic strain field can be produced in the cylinder by a
rigid displacement of the faces of the slit by a distance b in the x-direction
(Fig. 4.7(b)). The displacement and strains in the z-direction are zero and
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CHAPTER 4: Elastic Properties of Dislocations

(a)

FIGURE 4.7

(a) Edge dislocation formed
in a crystal. (b) Elastic
distortion of a cylindrical
ring simulating the
distortion produced by the
edge dislocation in (a).

z the deformation is called plane strain.
Derivation of the field components is beyond
the scope of the present treatment, however.
The stresses are found to be

(3% +9°)
T ey
@ =y
Oy =PV~ 52
(2 +y?)
N C
ny = ny = x—(x2 n y2)2

Oz = U0 + 0y)

Oxz = Oy = Oz = Ozy = 0 (4.16)

where

Gb
b= 27(1 — v)

The stress field has both dilational and shear components. The largest nor-
mal stress is oy, which acts parallel to the slip vector. Since the slip plane
can be defined as y = 0, the maximum compressive stress (o,, negative) acts
immediately above the slip plane and the maximum tensile stress (o, posi-
tive) acts immediately below the slip plane. The effective pressure (equation
(4.6)) on a volume element is

4

2
=21 +wv)D
31+

It is compressive above the slip plane and tensile below. These observations
are implied qualitatively by the type of distortion illustrated in Figs 1.18
and 4.7(a).

As in the case of the screw, the signs of the components are reversed for a
dislocation of opposite sign, i.e. a negative edge dislocation with extra half-
plane along the negative y-axis. Again the elastic solution has an inverse
dependence on distance from the line axis and breaks down when x and y
tend to zero. It is valid only outside a core of radius r,.

The elastic field produced by a mixed dislocation (Fig. 3.8(b)) having edge
and screw character is obtained from the above equations by adding the fields
of the edge and screw constituents, which have Burgers vectors given by
equation (3.2). The two sets are independent of each other in isotropic
elasticity.
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4.4 Strain Energy of a Dislocation

4.4 STRAIN ENERGY OF A DISLOCATION

The existence of distortion around a dislocation implies that a crystal con-
taining a dislocation is not in its lowest energy state. The extra energy is the
strain energy. The total strain energy may be divided into two parts

Etolal = Ewre + Eelastic strain (4~ 18)

The elastic part, stored outside the core, may be determined by integration
of the energy of each small element of volume. This is a simple calculation
for the screw dislocation, because from the symmetry the appropriate vol-
ume element is a cylindrical shell of radius r and thickness dr. From equa-
tion (4.9), the elastic energy stored in this volume per unit length of
dislocation is

1
dE,(screw) = 5 27r dr(og.eo; + 0ez) = 4mr drGep, (4.19)

Thus, from equation (4.15), the total elastic energy stored in the cylinder
(Fig. 4.5) per unit length of dislocation is

G’ (Rdr G (R
Ee](SCI'CW) = E T = Ell‘l — (420)

where R is the outer radius.

The above approach is much more complicated for other dislocations having
less symmetric fields. It is generally easier to consider E, as the work done
in displacing the faces of the cut LMNO by b (Figs 4.5 and 4.7) against the
resisting internal stresses. For an infinitesimal element of area dA of LMNO,
the work done is

dE,(screw) = %ozybdA

1 (4.21)
dE,(edge) = N oxybdA

with the stresses evaluated on y = 0. The factor § enters because the stresses
build up from zero to the final values given by equations (4.13) and (4.16))
during the displacement process. The element of area is a strip of width dx par-
allel to the z-axis, and so the total strain energy per unit length of dislocation is

2 R 2
Eel(screw) = %J % = %ln (5)

ar ), x 4 To

G (Rdx Gb? R
Faledee) = o =) Lx T (m)

(4.22)
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The screw result is the same as equation (4.20).
Strictly, equations (4.22) neglect small contributions
from the work done on the core surface r =1, of the
cylinder, but they are adequate for most requirements.

Equations (4.22) demonstrate that E. depends on
the core radius ry and the crystal radius R, but only
logarithmically. E. (edge) is greater than E. (screw)
by 1/(1-v)~3/2. Taking R=Imm, 7r,=1nm,
G=40GNm ? and b=0.25nm, the elastic strain
o energy of an edge dislocation will be about 4 nj m™*
or about 1 aJ(6 eV) for each atom plane threaded by

0 t [
0.1

FIGURE 4.8

The strain energy within a
cylinder of radius R that
contains a straight edge
dislocation along its axis.
The data was obtained by
computer simulation for a
model of iron. (Courtesy Yu.
N. Osetsky.)

Y the dislocation. In crystals containing many disloca-

1 10 tions, the dislocations tend to form in configurations

R, nm in which the superimposed long-range elastic fields

cancel. The energy per dislocation is thereby reduced

and an appropriate value of R is approximately half the average spacing of
the dislocations arranged at random.

Estimates of the energy of the core of the dislocation are necessarily very
approximate. However, the estimates that have been made suggest that the
core energy will be of the order of 1 eV for each atom plane threaded by the
dislocation, and is thus only a small fraction of the elastic energy. However,
in contrast to the elastic energy, the energy of the core will vary as the dislo-
cation moves through the crystal and this gives rise to the lattice resistance
to dislocation motion discussed in section 10.3.

The validity of elasticity theory for treating dislocation energy outside a
core region has been demonstrated by atomic scale computer simulation
(section 2.4). Figure 4.8 shows data for an atomic model of alpha iron con-
taining a straight edge dislocation with Burgers vector 4111] and line direc-
tion [112]. Eia is the strain energy within a cylinder of radius R with the
dislocation along its axis. The energy varies logarithmically with R, as pre-
dicted by equation (4.22), outside a core of radius 0.7 nm, which is about

2.6b. The core energy is about 7 eV nm ™.

It was mentioned in the preceding section that the elastic field of a mixed dis-
location (see Fig. 3.8(b)) is the superposition of the fields of its edge and
screw parts. As there is no interaction between them, the total elastic energy
is simply the sum of the edge and screw energies with b replaced by b sin 6
and b cos 6 respectively:

Gb?sin’0  Gb? coszéi} In (B) _ Gb*(1 — vcos?f) n(R>

Ea(mixed) = 70—+ —4x 47(1 —v) T

To To

(4.23)
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4.5 Forces on Dislocations

which falls between the energy of an edge and
a screw dislocation.

by |7 b,

From the expressions for edge, screw and NG D
mixed dislocations it is clear that the energy + = )
per unit length is relatively insensitive to the b, ¢
character of the dislocation and also to the
values of R and ry. Taking realistic values for R b,
and ry all the equations can be written approxi-
mately as

Line 1 Line 2 Line 3 bi+b,=b,

E, = aGb? (4.24)
FIGURE 4.9

where a =~ 0.5—1.0. This leads to a very simple rule (Frank’s rule) for deter- Reaction of two
mining whether or not it is energetically feasible for two dislocations to react dislocations to form a third.
and combine to form another. Consider the two dislocations in Fig. 4.9 with

Burgers vectors b; and b, given by the Burgers circuit construction (section

1.4). Allow them to combine to form a new dislocation with Burgers vector

bs as indicated. From equation (4.24), the elastic energy per unit length of

the dislocations is proportional to b3, b3 and b3 respectively. Thus, if

(b2 + b3) > b2, the reaction is favorable for it results in a reduction in energy.

If (b? + b3) < b3, the reaction is unfavorable and the dislocation with Burgers

vector bs is liable to dissociate into the other two. If (b3 + b3) = b3, there is

no energy change. These three conditions correspond to the angle ¢ in

Fig. 4.9 satisfying n/2<¢ =7, 0 = ¢ <7w/2 and ¢ = /2 respectively. In

this argument the assumption is made that there is no additional interaction

energy involved, i.e. that before and after the reaction the reacting disloca-

tions are separated sufficiently so that the interaction energy is small. If this

is not so, the reactions are still favorable and unfavorable, but the energy

changes are smaller than implied above. Frank’s rule is used to consider the

feasibility of various dislocation reactions in Chapters 5 and 6.

4.5 FORCES ON DISLOCATIONS

When a sufficiently high stress is applied to a crystal containing dislocations,
the dislocations move and produce plastic deformation either by slip as
described in section 3.3 or, at sufficiently high temperatures, by climb (sec-
tion 3.6). The load producing the applied stress therefore does work on
the crystal when a dislocation moves, and so the dislocation responds to the
stress as though it experiences a force equal to the work done divided by
the distance it moves. The force defined in this way is a virtual, rather than
real, force, but the force concept is useful for treating the mechanics of dislo-
cation behavior. The glide force is considered in this section and the climb
force in section 4.7.
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CHAPTER 4: Elastic Properties of Dislocations

FIGURE 4.10

The displacement ds used
to determine the glide
force on an element d/in
its glide plane.

Consider a dislocation moving in a slip plane under the influence of a uni-
form resolved shear stress 7 (Fig. 4.10). When an element d! of the disloca-
tion line of Burgers vector b moves forward a distance ds the crystal planes
above and below the slip plane will be displaced relative to each other by b.
The average shear displacement of the crystal surface produced by glide of

dlis
ds dl
(T) b (4.25)

where A is the area of the slip plane. The external force due to 7 acting over
this area is A7, so that the work done when the element of slip occurs is

dW = At (%) b (4.26)

The glide force F on a unit length of dislocation is defined as the work done when
unit length of dislocation moves unit distance. Therefore

F=——=—"=7b (4.27)

The stress 7 is the shear stress in the glide plane resolved in the direction of b and
the glide force F acts normal to the dislocation at every point along its
length, irrespective of the line direction. The positive sense of the force is
given by the physical reasoning of section 3.3.

In addition to the force due to an externally applied stress, a dislocation has
a line tension which is analogous to the surface tension of a soap bubble or a
liquid. This arises because, as outlined in the previous section, the strain
energy of a dislocation is proportional to its length and an increase in length
results in an increase in energy. The line tension has units of energy per unit
length. From the approximation used in equation (4.24), the line tension,
which may be defined as the increase in energy per unit increase in the length of
a dislocation line, is

T = aGb? (4.28)

Consider the curved dislocation in Fig. 4.11. The line tension will produce
forces tending to straighten the line and so reduce the total energy. The
direction of the net force is perpendicular to the dislocation and towards the
center of curvature. The line will only remain curved if there is a shear stress
which produces a force on the dislocation line in the opposite sense. The
shear stress 7, needed to maintain a radius of curvature R is found in the
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4.6 Forces between Dislocations

following way. The angle subtended at the center of T Dislocation

curvature is dd =dl/R, assumed to be « 1. The out- d6/2 -"f‘
ward force along OA due to the applied stress acting R ="
on the elementary piece of dislocation is 7obd! from el A | dl
equation (4.27), and the opposing inward force —_—
along OA due to the line tension T at the ends of do e
the element is 2T sin(d6/2), which is equal to Td# d6/2 *J[f--
for small values of df. The line will be in equilib- T
rium in this curved position when
FIGURE 4.11

Tdo=1obdl Curved element of

. T (4.29)  dislocation under line

L& To= 3R tension forces T.
Substituting for T from equation (4.28)

aGb
o= - (4.30)

This gives an expression for the stress required to bend a dislocation to a
radius R and is used many times in subsequent chapters. A particularly direct
application is in the understanding of the Frank—Read dislocation multipli-
cation source described in Chapter 8.

Equation (4.30) assumes from equation (4.24) that edge, screw and mixed
segments have the same energy per unit length, and the curved dislocation
of Fig. 4.11 is therefore the arc of a circle. This is only strictly valid if
Poisson’s ratio v equals zero. In all other cases, the line experiences a torque
tending to rotate it towards the screw orientation where its energy per unit
length is lower. The true line tension of a mixed segment is

d’Ea(6)
d¢?

where E,(0) is given by equation (4.23). T for a screw segment is four times
that of an edge when v =1/3. Thus, for a line bowing under a uniform
stress, the radius of curvature at any point is still given by equation (4.29),
but the overall line shape is approximately elliptical with major axis parallel
to the Burgers vector; the axial ratio is approximately 1/(1—v). For most
calculations, however, equation (4.30) is an adequate approximation.

T=Eu®0)+

(4.31)

4.6 FORCES BETWEEN DISLOCATIONS

A simple semi-qualitative argument will illustrate the significance of the con-
cept of a force between dislocations. Consider two parallel edge dislocations
lying in the same slip plane. They can either have the same sign as in
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Slip plane —

(a)

(b)

Slip plane A —
Slip plane B —

(©)

FIGURE 4.12
Arrangement of edge
dislocations with parallel
Burgers vectors lying in
parallel slip planes. (a) Like
dislocations on the same
slip plane, (b) unlike
dislocations on the same
slip plane, and (c) unlike
dislocations on slip planes
separated by a few atomic
spacings.

I
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CHAPTER 4: Elastic Properties of Dislocations

UL

Fig. 4.12 (a) or opposite sign as in Fig. 4.12 (b).
‘ When the dislocations are separated by a large
distance the total elastic energy per unit length of
the dislocations in both situations will be, from
equation (4.24)

aGb? + aGb? (4.32)

When the dislocations in Fig. 4.12(a) are very
‘ close together the arrangement can be considered

approximately as a single dislocation with a
Burgers vector magnitude 2b and the elastic
energy will be given by

aG(2b)? (4.33)

which is twice the energy of the dislocations
when they are separated by a large distance. Thus
the dislocations will tend to repel each other to
B reduce their total elastic energy. When disloca-
tions of opposite sign (Fig. 4.12(b)) are close
together, the effective magnitude of their Burgers vectors will be zero, and
the corresponding long-range elastic energy zero also. Thus dislocations of
opposite sign will attract each other to reduce their total elastic energy. The
positive and negative edge dislocations in Fig. 4.12(b) will combine and
annihilate each other. These conclusions regarding repulsion and attraction
also follow for dislocations of mixed orientation from Frank’s rule by put-
ting ¢ = 0 or 7 in Fig. 4.9. Similar effects occur when the two dislocations do
not lie in the same slip plane (Fig. 4.12(c)), but the conditions for attraction
and repulsion are usually more complicated, as discussed below.

The basis of the method used to obtain the force between two dislocations is
the determination of the additional work done in introducing the second
dislocation into a crystal which already contains the first. Consider two dis-
locations lying parallel to the z-axis in Fig. 4.13(a): they are shown as edge
dislocations for simplicity. The total energy of the system consists of the self-
energy of dislocation I plus the self-energy of dislocation II plus the elastic
interaction energy between I and II. The interaction energy Ei, is the work
done in displacing the faces of the cut which creates II in the presence of the
stress field of I. The displacements across the cut are b,, b, b, the compo-
nents of the Burgers vector b of II. By visualizing the cut parallel to either
the x or y axes, two alternative expressions for E;,,; per unit length of II are

Eint = +jx°c (bxoyy + byoy, + booy)dx

Eipy = — J;,OC (byoxx + bygyx + bzgzx)dy (4.34)
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y
Fy
Tll

A cut

11

1 11

11
o X &II 0

(@) H

11

11

0 11

-'_I—ZZZZ:ZZZZZcut 11
1 by— At

FIGURE 4.13
(@) Forces on dislocation Il due to interaction with dislocation I. Dislocations shown as edges for
simplicity. (b),(c) x component of displacement of cut faces used to create dislocation |I.

where the stress components are those due to I on the cut face of II. (The
signs of the right-hand side of these equations arise because if the displace-
ments of b are taken to occur on the face of a cut with outward normal in
the positive y and x directions, respectively, they are in the direction of posi-
tive x, y, z for the first case (x-axis cut) and negative x, y, z for the second
(y-axis cut) as shown explicitly in Figs 4.13(b) and (c), respectively, for the
b, component.)

The interaction force on II is obtained simply by differentiation of these
expressions, i.e. Fy = — 0Ej,/0x and F, = — OE;,,/0y. For the two parallel edge
dislocations with parallel Burgers vectors shown in Fig. 4.13(a), b,=b.=0
and b, = b, and the components of the force per unit length acting on II are
therefore

Fe=0yb F,=—04b (4.35)

where o,, and o, are the stresses of I evaluated at position (x, y) of II. The
forces are reversed if II is a negative edge i.e. the dislocations have opposite
sign. Equal and opposite forces act on 1. F, is the force in the glide direction
and F, the force perpendicular to the glide plane. Substituting from equation
(4.16) gives

_ G x(x* —y?)

2n(1 —v) (x2 + y2)2
. Gb*  y(3x* —y?)
¥ 27(1 —v) (x2 + y2)2

X

(4.36)
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FIGURE 4.14
Glide force per unit length between parallel edge dislocations with parallel Burgers vectors from
equation (4.36). Unit of force £, is Gb?/2x(l — v)y. The full curve A'is for like dislocations and the
broken curve B for unlike dislocations.

Since an edge dislocation can move by slip only in the plane contained by
the dislocation line and its Burgers vector, the component of force which is
most important in determining the behavior of the dislocations in Fig. 4.13(a)
is F,. For dislocations of the same sign, inspection of the variation of F,
with x reveals the following:

Fx nature X range
negative repulsive —0< X< —y
positive attractive —y<x<O0
negative attractive O<x<y
positive repulsive y<x<ow

The sign and nature of F, is reversed if [ and II are edge dislocations of oppo-
site sign. F, is plotted against x, expressed in units of y, in Fig. 4.14. It is zero
when x =0, *y, *oo, but of these, the positions of stable equilibrium are
seen to be x=0, *oo for edges of the same sign and =y if they have the
opposite sign.

It follows that an array of edge dislocations of the same sign is most
stable when the dislocations lie vertically above one another as in Fig. 4.15(a).
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FIGURE 4.15
Stable positions for two edge dislocations of (a) the same sign and (b) opposite sign.

This is the arrangement of dislocations in a small angle pure tilt s
boundary described in Chapter 9. Furthermore, edge dislocations of
opposite sign gliding past each other on parallel slip planes tend

to form stable dipole pairs as in Fig. 4.15(b) at low applied stresses
(section 10.8).

Comparison of the glide force F, in equation (4.35) with F in equa-
tion (4.27) shows that since oy, is the shear stress in the glide plane

4.7 Climb Forces

>
_)
\4

of dislocation II acting in the direction of its Burgers vector, equation
(4.27) holds for both external and internal sources of stress.

Consider two parallel screw dislocations (Fig. 4.16), one lying along the
z-axis. The radial and tangential components of force on the other are

Fr = O’ng Fg = erb (4.37)
and substituting from equations (4.15)
F, =Gb*/21r Fy=0 (4.38)

The force is much simpler in form than that between two edge dislocations
because of the radial symmetry of the screw field. F, is repulsive for screws of
the same sign and attractive for screws of opposite sign. It is readily shown
from either equations (4.35) or equations (4.37) that no forces act between
a pair of parallel dislocations consisting of a pure edge and a pure screw, as
expected from the lack of mixing of their stress fields (see section 4.3).

4.7 CLIMB FORCES

The force component F, in equation (4.35) is a climb force per unit length
resulting from the normal stress o,, of dislocation I attempting to squeeze
the extra half-plane of II from the crystal. This can only occur physically
if intrinsic point defects can be emitted or absorbed at the dislocation core
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TF lF of 1I (see section 3.6). As in the case of glide
J— J— forces, climb forces can arise from external and
Mechanical force £ D/ \D D‘/ \‘D internal sources of stress. The former are impor-

c<c, c>c, tant in creep, and the latter provided the example

FIGURE 4.17
Mechanical and chemical
forces for climb of an edge
dislocation. Vacancies
(shown as [J) have a local
concentration ¢ in
comparison with the
equilibrium concentration
Cp in a dislocation-free
crystal.

c<C, c>c,

of conservative climb in section 3.8 (Fig. 3.24).
Line tension can also produce climb forces, but
in this case the force acts to reduce the line

f f
| l I T length in the extra half-plane: shrinkage of pris-
Chemical force f D./\ AN

]

matic loops as in Fig. 3.20 is an example.
However, since the creation and annihilation of
point defects are involved in climb, chemical
forces due to defect concentration changes must
be taken into account in addition to these mechanical forces.

It was seen in section 3.6 that when an element 1 of dislocation is displaced
through s, the local volume change is b X 1-s. Consider a segment length [
of a positive edge dislocation climbing upwards through distance s in
response to a mechanical climb force F per unit length. The work done is Fls
and the number of vacancies absorbed is bls/(2, where 2 is the volume per
atom. The vacancy formation energy is therefore changed by FQ/b. As a result
of this chemical potential, the equilibrium vacancy concentration at temper-
ature T in the presence of the dislocation is reduced to

¢ = exp[—(E} + FQ/b)/kT]

= co exp[—FS)/bkT)] (4.39)

where ¢, is the equilibrium concentration in a stress-free crystal (equation
(1.3)). For negative climb involving vacancy emission (F < 0) the sign of
the chemical potential is changed so that ¢ > ¢,. Thus, the vacancy concen-
tration deviates from ¢y, building up a chemical force per unit length on
the line

f= bkﬁTln(C/CO) (4.40)

until f balances F in equilibrium. Conversely, in the presence of a super-
saturation c¢/c, of vacancies, the dislocation climbs up under the chemical
force f until compensated by, say, external stresses or line tension. The latter
is used in the analysis for a dislocation climb source in section 8.7. The
nature of these forces is illustrated schematically in Fig. 4.17. By substituting
reasonable values of T and (2 in equation (4.40), it is easy to show that even
moderate supersaturations of vacancies can produce forces much greater
than those arising from external stresses.

The rate of climb of a dislocation in practice depends on (a) the direction
and magnitude of the mechanical and chemical forces, F and f, (b) the
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FIGURE 4.18
(@) Screw and (b) edge dislocations a distance d from a surface x = 0. The image dislocations are in
space a distance d from the surface.

mobility of jogs (section 3.6) and (c) the rate of migration of vacancies
through the lattice to or from the dislocation.

4.8 IMAGE FORCES

A dislocation near a surface experiences forces not encountered in the bulk
of a crystal. The dislocation is attracted towards a free surface because the
material is effectively more compliant there and the dislocation energy is
lower: conversely, it is repelled by a rigid surface layer. To treat this mathe-
matically, extra terms must be added to the infinite-body stress components
given in section 4.3 in order that the required surface conditions are satis-
fied. When evaluated at the dislocation line, as in equations (4.35) and
(4.37), they result in a force. The analysis for infinite, straight dislocation
lines parallel to the surface is relatively straightforward.

Consider screw and edge dislocations parallel to, and distance d from, a sur-
face x = 0 (Fig. 4.18); the edge dislocation has Burgers vector b in the x direc-
tion. For a free surface, the tractions o,,, 0,, and o, must be zero on the
plane x =0. Consideration of equation (4.13) shows that these boundary
conditions are met for the screw if the infinite-body result is modified by
adding to it the stress field of an imaginary screw dislocation of opposite
sign at x = —d (Fig. 4.18(a)). The required solution for the stress in the body
(x > 0) is therefore

—Ay n Ay
P
T ) ()

(4.41)
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Ax — Ax + (4.42)
Oz = - .
W) G

where x_ = (x—d), x+ = (x +d) and A = Gb/27. The force per unit length in
the x-direction F,(= o,,b) induced by the surface is obtained from the second
term in o, evaluated at x=d, y = 0. It is

F,=—Gb*/4rd (4.43)

and is simply the force due to the image dislocation at x = —d. For the edge
dislocation (Fig. 4.18(b)), superposing the field of an imaginary edge dislo-
cation of opposite sign at x = —d annuls the stress o, on x =0, but not oy,.
When the extra terms are included to fully match the boundary conditions,
the shear stress in the body is found to be

Dx_(x*—y*) Dxy+(x% —y*) 2Dd[x_x> —6xx.y>+y?]
Oyy — - -
S (% +y2) (% +y2)

(4.44)

where D = A/(1—v). The first term is the stress in the absence of the surface,
the second is the stress appropriate to an image dislocation at x = —d, and
the third is that required to make o,,=0 when x=0. The force per unit
length F,(=0,,b) arising from the surface is given by putting x=d, y=0 in
the second and third terms. The latter contributes zero, so that the force is

Fy=—Gb*/4ar(1 — v)d (4.45)
and is again equivalent to the force due to the image dislocation.

The image forces decrease slowly with increasing d and are capable of remov-
ing dislocations from near-surface regions. They are important, for example,
in specimens for transmission electron microscopy (section 2.2) when the
slip planes are orientated at large angles (~90°) to the surface. It should
be noted that a second dislocation near the surface would experience a force
due to its own image and the surface terms in the field of the first. The inter-
action of dipoles, loops and curved dislocations with surfaces is therefore
complicated, and only given approximately by images.
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CHAPTER 5

Dislocations in Face-centered Cubic Metals

5.1 PERFECT DISLOCATIONS

Many common metals such as copper, silver, gold, aluminum, nickel and
their alloys, have a face-centered cubic crystal structure (Fig. 1.7). The pure
metals are soft, with critical resolved shear stress values for single crystals
0.1 —1 MN m 2. They are ductile but can be hardened considerably by plastic
deformation and alloying. The deformation behavior is closely related to the
atomic structure of the core of dislocations, which is more complex than
that described in Chapters 1 and 3.

The shortest lattice vectors, and therefore the most likely Burgers vectors for
dislocations in the face-centered cubic structure, are of the type %(1 10) and
(001). Since the energy of a dislocation is proportional to the square of the
magnitude of its Burgers vector b” (section 4.4), the energy of 1(110) disloca-
tions in an isotropic solid will be only half that of (001), i.e. 24*/4 compared
with a2. Thus, (001) dislocations are much less favored energetically and, in
fact, are only rarely observed. Since 1(110) is a translation vector for the lat-
tice, glide of a dislocation with this Burgers vector leaves behind a perfect
crystal and the dislocation is a perfect dislocation. Figure 5.1 represents a
3[110] edge dislocation in a face-centered cubic metal. The (110) planes per-
pendicular to b are illustrated and have a two-fold stacking sequence
ABAB... (section 1.2). The ‘extra half-plane’ consists of two (110) half-
planes in the ABAB. .. sequence. Movement of this unit dislocation by glide
retains continuity of the A planes and the B planes across the glide plane,
except at the dislocation core where the extra half-planes terminate.

5.2 PARTIAL DISLOCATIONS — THE SHOCKLEY
PARTIAL

Examination of Fig. 5.1 suggests that the two extra (110) planes need not

necessarily be immediately adjacent to each other. If separated, each would 85
Introduction to Dislocations. www.lran-mavad.com
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T[111]

BABABABABABA

[112]

FIGURE 5.1

Unit edge dislocation
1107 in a face-centered
cubic crystal. (After Seeger
(1957), Dislocations and
Mechanical Properties of
Crystals, p. 243, Wiley.)

BABABABABA

Glide plane
(111)

Burgers vector
1/2[110]

appear as a single dislocation with a Burgers vec-
tor shorter than 4(110). The perfect dislocation
would split into two partial dislocations, as
explained in section 5.3.

From the description of dislocation movement
in Chapter 3, it may be deduced that motion of a
dislocation whose Burgers vector is not a lattice
vector leaves behind an imperfect crystal contain-
ing a stacking fault. Thus, when a stacking fault
ends inside a crystal, the boundary in the plane
of the fault, separating the faulted region from
the perfect region of the crystal, is a partial dislo-
cation. Two of the important partial dislocations,
recognized in face-centered cubic metals, are the
Shockley partial, which is associated with slip, and

the Frank partial (see section 5.5). The formation of a Shockley partial edge
dislocation is illustrated in Fig. 5.2 and can be compared with the formation
of an edge dislocation in an elastic model (Fig. 3.3). The diagram represents
a (101) section through the lattice. The close-packed (111) planes lie at right
angles to the plane of the diagram. At the right of the diagram the (111)
layers are stacked in the sequence ABCABC... and the lattice is perfect. At
the left of the diagram the A layer atoms above LM have slipped in the [121]

Slip vector

1/6[121]
Trace of (111) N

FIGURE 5.2

AN VAREE
[ARNRVARRE W
B“‘ﬂ“l‘ .

[010] [101]

1/2[121]

[121]

Formation of a §[121] Shockley partial dislocation at M due to slip along LM. The open circles
represent the positions of atoms in the (101) plane of the diagram and the filled circles the positions
of the atoms in the (107) planes immediately above and below the plane of the diagram. Some lattice
vectors that lie in the (107) plane are indicated. (After Read (1953), Dislocations in Crystals,

McGraw-Hill.)
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direction to a B layer position, the B atoms have slipped to C and the C atoms
have slipped to A. This has produced a stacking fault and a partial dislocation.
The fault vector, which is in the (111) slip plane, is b= 1[121], and the mag-
nitude of the vector is a/\/ 6; this compares with a/,/2 for the 3(110) perfect
dislocation, as shown by the following:

Shockle b—l(uz) ~b2—£(12+12+22)_£
y G . 36 c
(5.1)
1 5 az 3 5 (,12
== =12 +12+4+0) = —
Perfect| b > (110) | : b 1 (1" +1°+0) >

The Burgers vector of a partial dislocation is described in the same way as
that of a perfect dislocation, except that the Burgers circuit must start and
finish in the surface of the stacking fault; if the circuit started at any other
position it would be necessary to cross the fault plane and the one-to-one
correspondence of the circuits in the perfect and imperfect lattices would not
be maintained. Since the Burgers vector of a partial dislocation is not a unit
lattice vector, the ‘finish’ position of the circuit in the perfect lattice
(Fig. 1.19(b)) is not a lattice site.

5.3 SLIP

Slip occurs between close-packed {111} atomic
planes and the observed slip direction is (110).
Only rarely does glide occur on other planes.
Since slip involves the sliding of close-packed
planes of atoms over each other, a simple experi-
ment can be made to see how this can occur. The
close-packed planes can be simulated by a set of
hard spheres, as illustrated schematically in
Fig. 5.3, and have a three-fold stacking sequence
ABCABC. .. (see also Fig. 1.7).

One layer is represented by the full circles, A, the
second identical layer rests in the sites marked B
and the third takes the positions C. Consider the
movement of the layers when they are sheared
over each other to produce a displacement in the
slip direction. It will be found that the B layer of atoms, instead of moving
from one B site to the next B site over the top of the A atoms (vector b,),
will move first to the nearby C site along the ‘valley’ between the two A

www.lran-mavad.com

dlgo guwnrigo g Ghgauisih gajo

FIGURE 5.3

Slip of {111} planes in
face-centered cubic
metals.
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y 0.6

FIGURE 5.4

~ surface for the (111) plane of copper obtained by atomic-scale computer simulation. - is zero for
perfect stacking (P). Intrinsic fault (F) is metastable (with v ~ 40 mJ m~2) and corresponds to fault
vectors of the form %(1 12). (Courtesy Yu. N. Osetsky.)

atoms (vector b,) and then to the new B site via a second valley (vector bs).
Thus, the B plane will slide over the A plane in a zig-zag motion.

This simple hard-sphere description has been confirmed by computer simu-
lation (section 2.4). As one part of a crystal slides over another across a
{111} plane to form a stacking fault, the energy varies from minima at
translations corresponding to perfect stacking to maxima when atoms across
the fault are directly over each other. The extra crystal energy per unit area of
stacking fault is the stacking fault energy ~y. A plot of ~ versus fault translation
vector is a y (or gamma) surface and is shown for a model of copper in
Fig. 5.4. The positions of perfect stacking (= 0) are labeled P and are con-
nected by translations of the type 4(110). The locations F correspond to the
intrinsic stacking fault (section 1.3) and are reached from P by vectors of the
form £(112). It can be seen that these translations follow low energy paths.
Furthermore, F is a local minimum (with v ~ 40 mJ m ~ ? for copper) so that
the fault is stable.

In terms of glide of a perfect dislocation with Burgers vector b; = 3(110), this
demonstration suggests that it will be energetically more favorable for the B
atoms to move to B via the C positions, i.e. P to F to P on the ~ surface. This
implies that the dislocation glides as two partial dislocations, one immedi-
ately after the other. The first has Burgers vector b, and the second Burgers
vector bz, each of which has the form %(112). The perfect dislocation with
Burgers vector b, therefore splits up or dissociates into two dislocations b, and
b; according to the reaction:

b1—>b2 +b3 (52)
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or

1 1 |
5(110)—>g(211) + 6(121)

In any of the four {111} slip planes there are three (110)
directions and three (112) directions, as shown for the
(111) plane in Fig. 5.5. Dissociation of a perfect disloca-
tion into two partials on, say, the (111) plane can there- 1/2[101]
fore be one of the Burgers vector reactions given by

1 1 1 - — = -
Eﬁlo}_»gpn] + gﬁzl} 1/6[211] 1/2[110]

1 1 1 ——

5 [101] - A [211] + A [112] (5.3) - S

1. 1. — 1 FIGURE 5.5

2 [011] - I3 [121] + 5 [112] Burgers vectors of perfect and Shockley partial

dislocations in the (111) plane.
and the reactions produced by complete reversal of each
vector. It is necessary in dislocation reactions to ensure
that the total Burgers vector is unchanged, as explained in section 1.4. The
right-hand side of the first of reactions (5.3), for example, is
é[f +1,1+2,1 +ﬂ, which equals the left-hand side. The same result is
demonstrated diagrammatically by the vector triangles in Fig. 5.5.

Frank's rule (section 4.4) shows that the splitting reaction (5.2) is energeti-
cally favorable, for from (5.1) b2 = a*/2 which is greater than b3 + b3 = a? /3.
Since the two Burgers vectors b, and bs are at 60° to each other, the two par-
tial dislocations repel each other with a force due to their elastic interaction
(see section 4.6). The force may be calculated from the separate forces
between their screw components (equation (4.38)) and their edge compo-
nents (equation (4.36) with y=0). If the spacing of the partials is d, the
repulsive force per unit length between the partials of either pure edge or
pure screw perfect dislocations is

G (2+v)

= 8r(l—nyd (989 -
5.4

_ Gb*(2-3v)

= S d 1=y (screw)

respectively, where b ( = a/,/6) is the magnitude of b, and bs. For the special
case v =0, F is the same in all line orientations:

by

F 27d 4rd

(5.5)
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Stacking fault

Glide plane

Burgers vector of
complete dislocation

Burgers vectors of
partial dislocations

FIGURE 5.6

Formation of an extended dislocation by dissociation of a unit edge dislocation (Fig. 5.1) into two
Shockley partials of Burgers vectors b, and bs separated by a stacking fault. (The labels ABAB. ..
refer to the stacking of (110) planes, as in fig. 5.2.) (After Seeger (1957), Dislocations and Mechanical
Properties of Crystals p. 243 Wiley.)

and this is a reasonable approximation to the more general results. Since b,
and bs are the Burgers vectors of Shockley partial dislocations, it follows
that if they separate there will be a ribbon of stacking fault between them.
The stacking sequence of {111} planes will be perfect outside the
dislocation (ABCABCABC...) and faulted between the partial dislocations
(ABCACABC. . .). This is the intrinsic fault discussed above and is equivalent
to four layers of close-packed hexagonal stacking in a face-centered cubic
crystal. The stacking fault energy (Jm ~? or Nm ™~ ') provides a force v per
unit length of line (N'm ™ ') tending to pull the dislocations together. An
equilibrium separation will be established when the repulsive and attractive
forces balance. The approximate equilibrium separation is obtained by
equating v to F in equation (5.5).
Gb?

The unit edge dislocation illustrated in Fig. 5.1 will split up as illustrated in
Fig. 5.6. The configuration is called an extended dislocation. Note that the
width, d, is inversely proportional to the stacking fault energy.

www.lran-mavad.com

dlgo Gumrigo g ghgauish gap



Screw dislocations can form a similar configuration to
Fig. 5.6. Except for the size of the partial separation d,
the dissociation of a perfect dislocation is independent
of its character (edge, screw or mixed). During glide
under stress, a dissociated dislocation moves as a pair of
partials bounding the fault ribbon, the leading partial
creating the fault and the trailing one removing it: the
total slip vector is b, 2%(110). Experimental observa-
tions of extended dislocations in thin foils have con-
firmed that this geometry is correct. Figure 5.7 shows
sets of extended dislocations lying in parallel slip planes.
The stacking fault ribbon between two partials appears
as a parallel fringe pattern. The individual partials are
not always visible and their positions are illustrated in
Fig. 5.7(b). Numerous estimates of v have been made
from direct observation of the spacing of partial disloca-
tions in the transmission electron microscope (see sec-
tions 2.2 and 7.8), from the shrinkage rate of faulted
prismatic loops such as those shown in Fig. 3.20, and
indirectly from the temperature dependence of the flow
stress of single crystals. It is probable that v =
140 mJ m~? for aluminum, ~40 mJ m~? for copper and
~20 mJ m* for silver. The corresponding width of the
stacking-fault ribbon given by equation (5.6) is about g,
5a and 7a, respectively. The widths predicted by equa-
tions (5.4) are rather greater than these for edge disloca-
tions and less for screws. For comparison with the (b)

sketch in Fig. 5.6, the atomic positions around the disso-

ciated dislocation in a model crystal of copper as obtained by computer sim-
ulation (see section 2.4) are shown in Fig. 5.8.

Cross slip (see section 3.4) is more difficult to achieve when dissociation
occurs, for a £(112) vector lies in only one {111} plane and so an individual
Shockley partial cannot cross slip. An extended dislocation is therefore con-
strained to glide in the {111} plane of its fault. Although extended screw
dislocations cannot cross slip it is possible to form a constriction in the screw
dislocation and then the perfect dislocation at the constriction can glide in
another {111} plane as in Fig. 3.9. A constriction is illustrated in Fig. 5.9.
Energy is required to form a constriction, since the dislocation is in its lowest
energy state when dissociated, and this occurs more readily in metals with a
high stacking fault energy such as aluminum. It follows that cross slip will
be most difficult in metals with a low stacking fault energy and this produces
significant effects on the deformation behavior. Formation of a constriction
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FIGURE 5.7

(@) Transmission electron
micrograph of extended
dislocations in a copper—7
per cent aluminum alloy.
(From Howie, Metallurgical
Reviews, 6, 467, 1961)
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FIGURE 5.8

(a) Atom positions in a (112) plane perpendicular to a pure edge dislocation lying in the [112]
direction and having Burgers vector %[11_0] in a computer simulation model crystal of copper. The
dislocation has dissociated into two Shockley partials at the positions shown. Atom displacements
either into or out of the plane of the paper are indicated by smaller or larger circles, respectively.

(b) The (112) plane viewed at a shallow angle in order to see the edge and screw components of the
two partials more clearly. (Courtesy Yu. N. Osetsky.)

can be assisted by thermal activation and hence the ease of cross slip
decreases with decreasing temperature. Constriction is also assisted by a
stress (the Escaig stress) acting on the edge component of the two partials so
as to push them together.

The sequence of events envisaged during the cross-slip process is illustrated in
Fig. 5.10. An extended (110) dislocation, say b=3[110], lying in the (111)
slip plane in (a), has constricted along a short length parallel to the [110]
direction in (b). The constricted dislocation has a pure screw orientation but
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5.4 Thompson's Tetrahedron m

Constriction to perfect screw dislocation

b, =1/6[211] b, = 1/6[211]
/Y

(111) plane S
b, = 1/6[121] b, = 1/6[121]

FIGURE 5.9

Constriction to a perfect screw segment in an extended dislocation in a face-centered cubic metal.
The Burgers vector of a Shockley partial is denoted by by, that of the perfect screw by b,. (After
Seeger (1957), Dislocations and Mechanical Properties of Crystals, p. 243, Wiley.)

—

b, = 1/2[110]

Stacking fault

(111) plane
(111) plane
(d)

b = 1/2[110]

(a) (b) ()

FIGURE 5.10
Four stages in the cross slip of a dissociated dislocation (a) by the formation of a constricted screw
segment (b). The screw has dissociated in the cross-slip plane at (c).

is unstable with respect to redissociation. A constriction is likely to form at a
region in the crystal, such as a barrier provided by a non-glissile dislocation or
impenetrable particle, where the applied stress tends to push the partials
together. By stage (c) the unit dislocation has dissociated into two different
partial dislocations with a stacking fault but on the (111) plane rather than
(111). This plane intersects the original glide plane along [110] and is there-
fore a possible cross-slip plane. The new extended dislocation is free to glide
in the cross-slip plane and has transferred totally to this plane by stage (d).

5.4 THOMPSON’S TETRAHEDRON

Thompson'’s tetrahedron provides a convenient notation for describing all
the important dislocations and dislocation reactions in face-centered cubic
metals. It arose from the appreciation that the four different sets of {111}
planes lie parallel to the four faces of a regular tetrahedron and the edges of
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m CHAPTER 5: Dislocations in Face-centered Cubic Metals

FIGURE 5.11

(a) Tetrahedron formed by joining four nearest-neighbor sites ABCD in a face-centered cubic structure.

(b) Thompson'’s tetrahedron.

the tetrahedron are parallel to the (110) slip directions (Fig. 5.11(a)). Note
that the ribbons of stacking fault and the bounding Shockley partial disloca-
tions of extended dislocations described in the preceding section are con-
fined to the {111} planes. The corners of the tetrahedron (Fig. 5.11(b)) are
denoted by A, B, C, D, and the mid-points of the opposite faces by «a, G, 7,
6. The Burgers vectors of dislocations are specified by their two end points
on the tetrahedron. Thus, the Burgers vectors 2(110) of the perfect disloca-
tions are defined both in magnitude and direction by the edges of the tetra-
hedron and are AB, BC, etc. Similarly, Shockley partial Burgers vectors
+(112) can be represented by the line from the corner to the center of a face,
such as AB, Ay, etc. The dissociation of a 1(110) dislocation described by
relation (5.2) can be expressed alternatively by reactions of the type:

AB=AJ + 0B (on slip plane ABC)
AB=A~+~B (on slip plane ABD)

Some caution must be exercised in using this notation for analyzing disloca-
tion reactions, for it is implicit that the two partials only enclose an intrinsic
fault when taken in the correct order. For the Burgers circuit construction
used here (section 1.4), the rule is as follows. When a perfect dislocation
(b =AB, say) is viewed along the direction of its positive line sense by an
observer outside the tetrahedron, an intrinsic fault is produced by a dissocia-
tion in which the partial on the left has a Greek-Roman Burgers vector (6B
or vB) and that on the right a Roman-Greek one (Ad or Av). For an observer
inside the tetrahedron, this order is reversed.

5.5 FRANK PARTIAL DISLOCATION

There is an alternative arrangement by which a stacking fault can end in a
crystal. The Frank partial dislocation is formed as the boundary line of a fault
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5.5 Frank Partial Dislocation ﬂ

Burgers T C
vector

FIGURE 5.12

Formation of a %[111] Frank partial dislocation by removal of part of a close-packed layer of atoms.
The projection and directions are the same as Fig. 5.2. (After Read (1953), Dislocation in Crystals,
McGraw-Hill,)

formed by inserting or removing one close-packed {111} layer of atoms.
The latter is illustrated in Fig. 5.12. Removal of a layer results in the intrinsic
fault with stacking sequence ABCACABC. .. whereas insertion produces the
extrinsic fault with ABCABACAB. .. (See Fig. 1.13.) Geometrically this intrin-
sic fault is identical to the intrinsic fault produced by dissociation of a per-
fect dislocation (section 5.3), but the bounding partial is different. The
Frank partial has a Burgers vector normal to the {111} plane of the fault and
the magnitude of the vector is equal to the change in spacing produced by
one close-packed layer, i.e. b= %(1 11). In Thompson’s notation b = A« for a
stacking fault in plane BCD. The Frank partial is an edge dislocation and
since the Burgers vector is not contained in one of the {111} planes, it can-
not glide and move conservatively under the action of an applied stress.
Such a dislocation is said to be sessile, unlike the glissile Shockley partial.
However, it can move by climb.

A closed dislocation loop of a Frank partial dislocation can be produced by
the collapse of a platelet of vacancies as illustrated in Figs 1.13(a) and 3.19:
it may arise from the local supersaturation of vacancies produced by rapid
quenching (section 1.3) or by the displacement cascades formed by irradia-
tion with energetic atomic particles. By convention this is called a negative
Frank dislocation. A positive Frank dislocation may be formed by the precipita-
tion of a close-packed platelet of interstitial atoms (Figs 1.13(b) and 3.19(d)),
as produced by irradiation damage. Both positive and negative Frank loops
contain stacking faults. Diffraction fringes due to stacking faults (section
2.2) are sometimes observed when dislocation loops are examined in the
electron microscope. An example is given in Fig. 5.13(a); this shows hexago-
nal vacancy loops formed in an aluminum alloy by quenching. The sides of
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FIGURE 5.13

Prismatic and sessile dislocation loops in an aluminum 3.5 per cent magnesium alloy quenched from
550°C into silicone oil at — 20°C. (a) Immediately after quenching some of the loops, €.g. A, contain
stacking faults, as seen by fringe contrast, and are Frank sessile dislocations. (b) After being heated
slightly the stacking fault in one of the loops has disappeared indicating that the loop is now a perfect
dislocation. (From Westmacott, Barnes, Hull and Smallman, Phil. Mag. 6, 929, 1961.)

the loop are parallel to (110) close-packed directions in the fault plane. In
some cases no stacking fault contrast is observed. All the loops initially grow
as negative Frank loops nucleated from collapsed vacancy discs on {111}
planes, but the stacking fault can be removed by a dislocation reaction as
follows. Considering the negative Frank sessile dislocation in Fig. 5.12, the
fault will be removed if the crystal above the fault is sheared so that C — B,
A — C, B — A, etc. This £(112) displacement corresponds to the glide of a
Shockley partial dislocation across the fault. The Shockley partial may have
one of three £(112) type vectors lying in the fault plane. It is envisaged that
this partial dislocation forms inside the loop and then spreads across the
loop removing the fault; at the outside it will react with the Frank partial
dislocation to produce a perfect dislocation. One of the three possible reac-
tions for a loop on the (111) plane (or on the BCD plane in the Thompson
tetrahedron notation) is

1, .= 1 1
—[112] + S [111]> =[110]
6 3 2
(5.8)
Ba aA BA

Shockley partial Frank partial Perfect dislocation

Figure 5.13(b) shows the same field as Fig. 5.13(a) after the foil had been in
the microscope for some time; the fringe contrast in loop A has disappeared
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5.5 Frank Partial Dislocation

[001] _ (111) planes
\

/
b=120110] 000 a" o 990 8 0 o° o° o
(b) A —o——0—0-
C
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b=1/3111] ¢
B
(c) A
(e}
/ B
b=1/2[110] &
B
(d) A
FIGURE 5.14

(@), (c). Atomic structure through vacancy and interstitial Frank loops on the (111) plane of a face-
centered-cubic metal, and (b), (d) the perfect loops formed by the unfaulting reactions (5.8), (5.9).
(After Ullmaier and Schilling (1980), in Physics of Modem Materials, p. 301, IAEA, Vienna.)

due to a reaction of the type described above and the Burgers vector of the
loop has changed from 1 (111) to 3(110).

For an interstitial loop, two Shockley partials are required to remove the
extrinsic fault. With reference to Fig. 1.13(b), one partial glides below the
inserted layer transforming A - C, C - B, A - C, B — A, etc., leaving an
intrinsic fault CABCBCA. .., and the other sweeps above the layer with the
same result as in the vacancy case. One possible reaction in, say, the (111)
plane is

S (P | 1
[T2T] +  [2TT] + S [111] > S[110] (5.9)

aC aD aA BA

The atom positions before and after reactions of types (5.8) and (5.9) are
shown schematically in Fig. 5.14. The prismatic loops thus formed are rings
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of perfect dislocation and can slip on their cylindrical glide surfaces
(Fig. 3.18) to adopt new positions and orientations.

Unfaulting reactions (5.8) and (5.9) owing to single and double dislocations
(S- and D-Shockley partials) will occur only when the stacking fault energy is
sufficiently high. The essential problem is whether or not the prevailing con-
ditions in the Frank loop result in the nucleation of a Shockley partial dislo-
cation and its spread across the stacking fault. A necessary condition is that
the energy of the Frank loop with its associated stacking fault is greater than
the energy of the perfect dislocation loop, i.e. there is a reduction in energy
when the stacking fault is removed from the loop. To a good approximation,
the elastic energy of a circular edge loop of radius r in an isotropic solid
with Burgers vector b, perpendicular to the loop plane is

E Gb2r

" 20-v) 7

and for a circular shear loop with Burgers vector by lying in the loop plane

Gb2r
E= 2(1 —v) (1 2

These relations are readily obtained from equations (4.22) by noting that
the line length is 277, the shear loop is a mixture of dislocation of edge and
screw character, and the stress fields of dislocation segments on opposite
sides of a loop will tend to cancel at distances ~2r from the loop, so that
the outer cut-off parameter R in (4.22) is ~2r. For the Frank loop with b =
3(111), b2 =a?/3 andb? =0, and for the perfect loop with b=3(110),
b2 =a?/3 andb? = a?/6. Thus, the difference in energy between the Frank
loop containing the stacking fault and the perfect, unfaulted loop is

AE =717y —
ey 24

1—v

rGa? (2 —v
In

Therefore, the unfaulting reaction will be energetically favorable if

Ga? (2 —v
v> In

24mr \1 —v

Thus the lower limit to the value of ~ for removal of a fault depends on the
size of the loop. Taking a=0.35nm,
To=0.5nm, and »=0.33, the critical stacking fault energy is about
60 mJ m 2. Since r= 10 nm is close to the minimum size for resolving loops
in the electron microscope it is not surprising that stacking fault loops are
rarely observed in metals with ~ values larger than this.
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5.6 Dislocation Locks and Stair-Rod Partials a

The necessary condition based on initial and final energy values may not be
a sufficient one for unfaulting, for it neglects the fact that the Shockley par-
tial must be nucleated somewhere within the Frank loop, and there is almost
certainly an energy barrier for this process. If a loop grows by the absorption
of point defects, it will become increasingly less stable, but if the Shockley
nucleation energy is independent of r, the equilibrium unfaulted state may
not be achieved. The probability of nucleation is increased by increasing
temperature and the presence of external and internal sources of stress. The
removal of the fault in Fig. 5.13 may have occurred due to local shear stres-
ses in the foil. Thus, there is no hard-and-fast rule governing loop
unfaulting.

Finally, it is noted that if a second platelet of vacancies nucleates within a
negative Frank loop adjacent to the intrinsic fault with stacking sequence
ABCACABC.. ., a disc of extrinsic fault ABCACBC... is formed. If a third
platelet nucleates against the second, the stacking sequence through all three
is perfect ABCABC. .. Concentric loops of Frank partial dislocation contain-
ing alternating rings of intrinsic, extrinsic and perfect stacking have been
observed under certain conditions.

5.6 DISLOCATION LOCKS AND STAIR-ROD
PARTIALS

Strain hardening in metals can be attributed to the progressive introduction
during straining of barriers to the free movement of dislocations (section
10.8). Several barriers have been proposed for the face-centered cubic metals.
They form by contact reaction between dislocations of different slip systems.
There are three possible 7(110) vectors plus their reverses on each of the four
{111} glide planes (Fig. 5.5), and so 18 reactions are possible between a
dislocation of one slip system and dislocations on the other three planes.
Reactions are favorable or unfavorable according to Frank’s rule for the
Burgers vectors involved (section 4.4). If the two dislocations have the
same Burgers vector but opposite line sense when they meet along the line
of intersection of their glide planes, the reacting segments annihilate, as illus-
trated by the collinear interaction in Fig. 7.18. In other cases, favorable reac-
tions create new dislocations that can act as barriers to other dislocations of
the slip systems involved. One is the Lomer lock. It can be formed in the fol-
lowing way.

Consider two perfect dislocations gliding in different {111} planes
(Fig. 5.15(a)). Their Burgers vector and positive line sense are indicated by
arrows. If they move to combine along the [011] intersection line of their
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(111) 1)

1/2[110]

12710

[071]

1/2[101]

\ A1)

1/2[011] \\ 1/2[101]

(a) (o) 1

FIGURE 5.15
Formation of a Lomer sessile dislocation. The two 15(110){111} dislocations in (a) can react to form a
%(110){001} dislocation as in (b).

glide planes, as sketched in [011] projection in Fig. 5.15(b), a pure edge
dislocation known as a Lomer dislocation is formed with Burgers vector
given by

1[110] +1[101]>4011] (5.14)

In Thompson tetrahedron notation, DA (on ACD) plus BD (on BCD) equals
BA, as illustrated in Fig. 5.16(a). The reaction results in a 50% reduction in
dislocation energy per unit length. The glide plane of the Lomer dislocation
is (100) and so it is sessile, i.e. it cannot glide on any of the four {111}
planes.

Another reaction can occur in which b® is unchanged but the two reacting
dislocations attract to form a stable segment if their initial orientations are
suitable. For example, a dislocation on ABD with Burgers vector DB (Figs
5.11(a) and 5.16(a)) can react with one on ABC with Burgers vector AC. The
product vector (DB + AC) is of <100> type, which is not a slip vector, and
the new segment forms an effective lock known as a Hirth lock.

In most metals, each dislocation in Fig. 5.15(a) will be dissociated in its
glide plane into two Shockley partial dislocations bounding a stacking-fault
ribbon (Fig. 5.17(a)). If the dislocations meet at the line of intersection of
the two planes, the leading partials repel or attract each other according to
Frank’s rule for their Burgers vectors. There are three possible %(1 12) vectors
plus their reverses on each plane (Fig. (5.5)), and there are therefore 36 com-
binations to consider. The most favorable gives a product dislocation with
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5.6 Dislocation Locks and Stair-Rod Partials m

(b)
FIGURE 5.16

Thompson tetrahedron illustrating Burgers vectors involved in formation of (a) a Lomer lock and (b) a

Lomer—Cottrell lock.

1/6[211]
Stacking fault

1/6[127]

1/6[211]

(a) 1/6[112]

stacking fault

1/6[211]

1/6[011]_

Lomer—Cottrell
sessile dislocation
(b) 1/6[211]

FIGURE 5.17

Formation of a Lomer—Caottrell sessile dislocation. The perfect dislocations in Fig. 5.15(a) have

dissociated in (a) and reacted favourably to form a Lomer—Cottrell dislocation in (b).
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m CHAPTER 5: Dislocations in Face-centered Cubic Metals

Burgers vector of the form %(110), ie. a8, a~, etc, on the tetrahedron. This

reaction for the (111) and (111) planes is shown in Fig. 5.17(b) and is

- 1
+
6

— [1T2] - =

Using the b” criterion for dislocation energy per unit length:

a’>  a?

6 6

which represents a considerable reduction. In Thompson's notation for
Burgers vectors, two perfect dislocations dissociate on different planes:

DA-DB+ BA (on ACD)
BD—-Ba +aD (on BCD)

and one Shockley from each combine:

aD +DB-af

The vectors are shown in Fig. 5.16(b). The product partial dislocation forms
along one of the six (110) directions at the intersection of the stacking faults
on two {111} planes. By analogy with carpet on a stair, it is called a stair-rod
dislocation. For some reactions with different resultant vectors, the angle

between the stacking faults is obtuse.

The Burgers vector a3 of the stair-rod partial is perpendicular to the disloca-
tion line and does not lie in either of the two {111} planes of the adjacent
faults. Thus, it cannot glide on these planes, and the {100} plane which con-
tains the line and its Burgers vector is not a slip plane. The dislocation is sessile.

The dislocations that result from the reactions in Figs 5.15 and 5.17 have the
same total Burgers vector, i.e. {011]. However, the arrangement of three par-
tials in Fig. 5.17 is more stable because the Lomer dislocation can dissociate

with a reduction in b* according to

1 1
E[011]—>g[011]+ pll]

2

, a a

b:—>—+ =+

2 18

The stair-rod partial therefore exerts a repulsive force on the two Shockley
partials and these three partial dislocations (Fig. 5.17(b)) form a stable, ses-
sile arrangement. It acts as a barrier to the glide of further dislocations on
the two {111} planes, and is known as a Lomer—Cottrell lock.

Stair-rod dislocations described above are the reaction product of disloca-
tions from different slip systems. Stair-rod partials are also geometrically
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5.7 Stacking Fault Tetrahedra a

FIGURE 5.18
Dissociated dislocation with total Burgers vector BD bending from plane BCD to plane ADB through
(@) an acute angle and (b) an obtuse angle. A stair-rod partial is created at the bend.

necessary when a dissociated dislocation bends from one plane to another.
Figure 5.18 uses the Thompson tetrahedron notation for a dissociated dislo-
cation bending from plane BCD to plane ABD. Its total Burgers vector is BD,
which lies in both planes. The angle between the two planes may be acute,
as in (a), or obtuse, as in (b). The arrows on the partial dislocations show
the positive line sense used to define the Burgers vectors according to the tet-
rahedron drawn on each figure. (Following the rule stated at the end of sec-
tion 5.4, Shockley partials on plane ABD in Fig. 5.18(b) have Greek letters
on the inside, consistent with an observer viewing from inside the tetrahe-
dron.) The Burgers vectors of the Shockley partials change with the change
of plane, and so the rule that Burgers vector be conserved (section 1.4)
requires a stair-rod partial to exist at each bend. Application of the rule at
either of the nodes at the ends of the stair-rods shows that the Burgers vector
of the stair-rod is oy in the acute case, i.e. (aD + D7) or (aB + B7), and
(aD +~vB) or (aB + D) for the obtuse case. These have Miller indices of
the type £(110) and £(100), respectively.

5.7 STACKING FAULT TETRAHEDRA

Another dislocation arrangement has been observed in metals and alloys of
low stacking-fault energy following treatment that produces a supersaturation
of vacancies. It consists of a tetrahedron of intrinsic stacking faults on {111}
planes with £(110) type stair-rod dislocations along the edges of the tetrahe-
dron. Stacking-fault tetrahedra have been observed in metals following
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FIGURE 5.19

Transmission electron micrograph of tetrahedral defects

in quenched gold. The shape of the tetrahedra viewed in
transmission depends on their orientation with respect to
the plane of the foil, (110) foil orientation. (From Cottrell,
Phil. Mag. 6, 1351, 1961.)

FIGURE 5.20

Jog lines on a {111} face
of a stacking-fault
tetrahedron.

quenching (Fig. 5.19) or radiation damage (Fig. 2.9).
Once nucleated, they can grow in a supersaturation
of vacancies by the climb of ledges (‘jog lines’) on the
{111} faces due to vacancy absorption (Fig. 5.20).

The Silcox—Hirsch mechanism provides one explana-
tion for their occurrence. According to the discussion
in section 5.5, when a platelet of vacancies (pro-
duced by quenching from a high temperature) col-
lapses to form a loop of Frank partial dislocation,
the stacking fault will be stable if the fault energy is
sufficiently low. The Frank partial may dissociate
into a low-energy stair-rod dislocation and a
Shockley partial on an intersecting slip plane accord-
ing to a reaction of the type

1 1 1
S[111]—> Z[101]+ <[121]

(5.20)
N
318 6

Discounting the energy of the stacking fault there is
a reduction in b® and the reaction is favorable

according to Frank's rule. With reference to the Thompson tetra-
hedron notation (Fig. 5.11(b)), suppose that the vacancies con-
dense on the {111} plane BCD in the form of an equilateral
triangle with edges parallel to (110) directions BC, CD, DB. The
triangular Frank partial with Burgers vector aA can dissociate to
produce a stair-rod along each edge and a Shockley partial on
each of the three inclined {111} planes as shown in Fig. 5.21(a)
by Burgers vector reactions of the type (5.20), namely

aA—-afB+ BA (on ACD)
aA—-a~y+~A (on ABD)
aA—-ad +6A (on ABC)

(5.21)

The Shockley partial dislocations BA, YA and JA will be repelled by the
stair-rod dislocations a3, ay and aé respectively and will bow out in their
slip planes. Taking account of dislocation line sense, it is found that the par-
tials attract each other in pairs to form another set of stair-rods along DA,

BA and CA (Fig. 5.21(b)) according to the reactions

BA +Avy— By (along DA)
YA+ Ad—>~d (along BA)
0A +AB—3d3 (along CA)

(5.22)

www.lran-mavad.com

dlgo Gunrigo g ghgauisils gajo



5.7 Stacking Fault Tetrahedra ﬂ

(a) (b)

FIGURE 5.21
Formation of a stacking-fault tetrahedron by the Silcox—Hirsch mechanism. Arrows show the positive

line sense used to define the Burgers vectors, which are denoted by directions on the Thompson
tetrahedron.

In Miller index notation the reactions are of the type (5.15). As a result of
the transformation to a stacking fault tetrahedron, the vacancy content
of the original Frank loop becomes distributed equally over the four faces of

the tetrahedron.

The shape of tetrahedra observed in thin foils by transmission microscopy
depends on the orientation of the tetrahedra with respect to the plane of the
foil, as seen in Fig. 5.19. The complex contrast patterns inside the faults arise
from overlapping stacking faults in different faces of the tetrahedron. The
increase in energy due to the formation of stacking faults places a limit on
the size of the fault that can be formed. If the fault energy is relatively high,
the Frank loop may be stable or it may only partly dissociate, thereby form-
ing a truncated tetrahedron as in Fig. 5.21(b).

The stacking fault tetrahedra observed in irradiated metals (Fig. 2.9) are
smaller than those created as a result of quenching (Fig. 5.19). They
are believed to form directly in displacement cascades, rather than by the
Silcox—Hirsch mechanism. The core region of a cascade is disordered with a
high concentration of vacancies and molecular dynamics computer simula-
tion shows that a tetrahedron can form as the atoms reorganize to a more
stable arrangement. Stacking fault tetrahedra can also result from plastic
deformation due to the cross slip of a segment of jogged screw dislocation,
as illustrated in Fig. 5.22. In (a), the screw dislocation with Burgers vector
AD (Thompson tetrahedron notation) is dissociated in the plane ABD
(AD = A~ + D) and contains a jog. The right-hand segment of the screw
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m CHAPTER 5: Dislocations in Face-centered Cubic Metals

on ABD

(a)

on ABD
(b)

FIGURE 5.22
Three stages in the formation of a triangular Frank loop by cross slip of a jogged screw dislocation.
Pairs of letters denote Burgers vectors in the notation of Fig. 5.11.

has cross slipped in (b) onto plane ACD (AD = A3+ D) and the jog has
dissociated on plane BCD into a Frank partial (Aa) and a Shockley partial
(aD). The jog has been removed in (c): the screw dislocation glides away
leaving a triangular Frank loop (Burgers vector Aa) on BCD which can form
a stacking-fault tetrahedron by the Silcox—Hirsch mechanism of Fig. 5.21.
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CHAPTER 6

Dislocations in Other Crystal Structures

6.1 INTRODUCTION

The face-centered cubic metals have been treated separately in Chapter 5
because although many of the dislocation reactions and properties presented
have counterparts in other structures, they are more readily described in the
face-centered cubic system. In general, reducing the crystal symmetry, chang-
ing the nature of the interatomic bonding and increasing the number of
atom species in the lattice make dislocation behavior more complex.
Nevertheless, many of the features of the preceding chapter carry over to
other structures, as will be seen in the following. The two other major metal-
lic structures are discussed first, and then some important compounds and
non-metallic cases are considered.

6.2 DISLOCATIONS IN HEXAGONAL CLOSE-
PACKED METALS

Burgers Vectors and Stacking Faults

Some of the important metals of this structure are given in Table 6.1. As
explained in section 1.2, the (0001) basal plane is close-packed and the
close-packed directions are (1120). The shortest lattice vectors are 1(1120),
the unit cell generation vectors a in the basal plane. It may be anticipated,
therefore, that dislocation glide will occur in the basal plane with Burgers
vector b=4(1120): this slip system is frequently observed. None of the
metals has a structure represented by ideally close-packed atomic spheres,
which would require the lattice parameter ratio c¢/a to be (8/3)1/ 2=1.633,
although magnesium and cobalt have a c/a ratio close to ideal. This indicates
that directionality occurs in interatom bonding. As a consequence of this, it
is found that some metals slip most easily with b =%(1 120) on the first-
order prism planes {1010} (see Table 6.1). Basal and prism planes, and a 109

Introduction to Dislocations. www.lran-mavad.com
© 2011 D. Hull and D. J. Bacon. Published by Elsevier Ltd. All rights reserved.
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m CHAPTER 6: Dislocations in Other Crystal Structures

Table 6.1 Properties of Some Hexagonal Close-Packed Metals at 300 K

Metal Be Ti Zr Mg Co Zn Cd

c/a ratio 1.568 1.587 1.593 1.623 1.628 1.856 1.886

Preferred slip basal prism prism basal basal basal basal

plane for b=a (0001) {1070} {1070} (0001) (0001) (0001) (0001)
Prism plane Pyramidal plane first-order pyramidal plane with a common

(1010)

(1011) [1210] axis are shown in Fig. 6.1.

Burgers vectors for the structure may be described
in a similar fashion to the Thompson tetrahedron
for face-centered cubic metals by using the
bi-pyramid shown in Fig. 6.2. The important dis-
locations and their Burgers vectors are as follows.

Basal plane
(0001)

FIGURE 6.1

Planes in an hexagonal
lattice with common
[1210] direction.

(c)

(d)
(e)
)

(a) Perfect dislocations with one of six Burgers
vectors in the basal plane along the sides of
the triangular base ABC of the pyramid,

[1270] represented by AB, BC, CA, BA, CB and AC.
(b) Perfect dislocations with one of two Burgers
vectors perpendicular to the basal plane,
represented by the vectors ST and TS.

Perfect dislocations with one of twelve Burgers vectors represented by

symbols such as SA/TB, which means either the sum of the vectors ST

and AB or, geometrically, a vector equal to twice the join of the mid-

points of SA and TB.

Imperfect basal dislocations of the Shockley partial type with Burgers

vectors Ao, Bo, Co, oA, 0B and oC.

Imperfect dislocations with Burgers vectors perpendicular to the basal

plane, namely, S, oT, So and To.

Imperfect dislocations which are a combination of the latter two types

given by AS, BS, etc. Although these vectors represent a displacement

from one atomic site to another the associated dislocations are not per-
fect. This is because the sites do not have identical surroundings and the
vectors are not translations of the lattice.

The Miller—Bravais indices and length b of these Burgers vectors b are given
in Table 6.2. The value of b for ideal close-packing (c2 =£4?) is also given:
appropriate adjustments are required when dealing with non-ideal packing.

A number of different stacking faults are associated with the partial disloca-
tions listed in Table 6.2. According to the hard-sphere model of atoms, three
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6.2 Dislocations in Hexagonal Close-packed Metals

basal-plane faults exist which do not affect nearest-neighbor arrangements of
the perfect stacking sequence ABABAB. .. Two are intrinsic and convention-
ally called I, and I,. Fault I; is formed by removal of a basal layer, which
produces a very high energy fault, followed by slip of 1(1010) of the crystal
above this fault to reduce the energy:

ABABABABA ... - ABABBABA ... -»ABABCBCB... .(I;) (6.1)

Fault I, results from slip of $(1010) in a perfect crystal:

ABABABAB ... - ABABCACA. . .(I,) (6.2)

The extrinsic fault (E) is produced by inserting an extra plane:

ABABABAB ... - ABABCABAB ... . (E) (6.3)

(b) A B

FIGURE 6.2

Burgers vectors in the hexagonal close-packed lattice. (From Berghezan, Fourdeux and Amelinckx,
Acta Metall. 9, 464, 1961.)

Table 6.2 Dislocations in Hexagonal Close-Packed Structures. The Values of b? are for the
Case ¢* = 84’

Type AB TS SA/TB Ao oS AS

b 1(1120) [0001] 1(1123) 3(1100) 1[0001] 4(2208)
b a c (2 + )2 al3 c/2 (g + %)E
b? a? % a? % a? % a? % a? a?
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m CHAPTER 6: Dislocations in Other Crystal Structures

These faults introduce into the crystal a thin layer of face-centered cubic
stacking (ABC) and so have a characteristic stacking-fault energy «. The main
contribution to v arises from changes in the second-neighbor sequences of
the planes. There is one change for I, i.e. the A sequence changes to C, two
for I, and three for E, and so to a first approximation v, ~ 3v; ~ 37, .
Experimental estimates of ~ for the basal-slip metals are generally higher
than those quoted earlier for the face-centered cubic metals. However, theo-
retical values obtained by ab initio methods (section 2.4) are now considered
to be more reliable. Values for v for the I, basal fault in magnesium are in
the range 30 to 40 mJm ™2 and calculations for zirconium give 200 mJm 2.
The symmetry of the face-centered cubic structure guarantees that the {111}
v-surface has an extremum (maximum or minimum) for the fault vector
(1 12) because three mirror planes perpendicular to the fault plane exist at
that position (see Figs 5.3 and 5.4). The same condition applies to the I,
fault on the basal plane of the hexagonal close-packed metals. It is not satis-
fied for the first-order prism planes {1010} in these metals, however.

Geometrical models used to consider possible faults on the {1010} planes
have led to proposals that stable faults may exist with vectors {(2463) or
%(1150). The first produces a fault which is stable in a lattice consisting of
hard spheres. The second results in prism planes adjacent to the fault ribbon
adopting the stacking of {112} planes in body-centered cubic metals, the rel-
evance being that this is the stable crystal structure for titanium and zirco-
nium at high temperature. There is no evidence that these faults exist in real
metals, however. Treatment based on ab initio calculations for zirconium
have shown that a stable fault exists with vector % (112 ), where « is between
0 and 0.6. The corresponding value of v is approximately 140 mjm™ °.
Prism-plane faults in metals such as magnesium that slip predominantly on
the basal plane are believed to have very high energy and are probably
unstable.

Basal and Non-basal Slip

The shortest lattice vectors of the hexagonal close-packed metals are of the
form 1(1120) (see Table 6.2) and the most commonly observed slip systems
are 1(1120)(0001) and 1(1120){1100} (see Table 6.1). For metals such as
beryllium, magnesium, cadmium and zinc, the critical resolved shear stress
(CRSS) for basal slip is low (=1 MN m?), whereas for titanium and zirco-
nium, in which prism-plane slip, the critical stress for prism slip is higher
(=10 MN m ). Intuitively, the higher value arises from the corrugated
nature of the {1010}atomic planes. However, the choice of preferred glide
plane is less easy to explain. Although it may be anticipated that the lattice
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6.2 Dislocations in Hexagonal Close-packed Metals m

4 [0001] [1100] , [0001]
/: E\ | /i’: i
FI B == i s
b <l ¥ . b (0001 Ul
P _:/?:«;\;_E:—_—" E/ :_/_;7\7—_:_/___
™
[1120] [1100] ‘?1501 [1100]
(@) (b) ()
FIGURE 6.3

Edge and screw dislocations with b = % (1120) responsible for basal and prism slip in the hexagonal close-packed structure.

resistance to glide is smaller for planes with wide spacing (section 10.3), this
does not account for the choice of preferred slip system in some of the hex-
agonal metals because the inter-planar spacing is ¢/2 for (0001) and /3a/2
for {1010}, and therefore larger for the prism planes when c/a < \/ 3. Itis
now understood that the preference for slip by one system over another is
determined by the energy and stability of stacking faults on the basal and
prism planes, and by the effect such faults have on the atomic structure in
the core of the screw dislocation in particular. The edge and screw disloca-
tions with h=4(1120) that are responsible for basal and prism slip are
shown schematically in Fig. 6.3.

If the stable I, stacking fault with vector %(1 120) described above exists on
the basal plane, then £(1120)(0001) slip is similar to 3(110){111} slip in the
face-centered cubic metals, in that the critical resolved shear stress (CRSS) is
low (=1 MN m?) and the perfect dislocation dissociates into two Shockley
partials bounding a ribbon of stacking fault. The Burgers vector reaction is

AB—Ac +oB (6.4)
e.g.

b : a’ a’/3 a’/3

The geometry is the same as that of the face-centered cubic case, in that the
partial vectors lie at =30° to the perfect vector and the fractional reduction
in dislocation energy given by b” is 1/3. The spacing of the partials may be
calculated from equations (5.4) and (5.5) by replacing b” by a®/3. The fault
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CHAPTER 6: Dislocations in Other Crystal Structures

Shockley Shockley involved is the intrinsic fault I,, as shown sche-

partial partial matically in Fig. 6.4. With the dissociation

Ao oB described, the atomic disregistry of the edge

and screw dislocations of Figs 6.3(a) and (c)

A c A Will be spread along the basal plane. This

B A g reduces the critical resolved shear stress
A i A required for glide on that plane.

i ch i If the stable stacking fault with vector £(112a)

B hd '8/ hd g described above exists on the prism plane, then

A LA A slip will be similar to that on the basal plane

B i B except that the atomic misfit in the core of the

A A dislocations depicted in Figs 6.3(b) and (c)

FIGURE 6.4 will spread on the prism plane. Again, the

Dissociation of a perfect
dislocation with Burgers
vector AB (Fig. 6.2) into
two Shockley partial
dislocations separated by a
stacking fault /. Double
arrows indicate the two
errors in the two-fold
stacking sequence of the
basal planes.

spacing of the partial dislocations involved, in this case with Burgers vectors
+(1120) and }(112a@), is inversely proportional to ~y of the fault, and dissoci-
ation reduces the critical resolved shear stress for glide on the fault plane.

The significance of having different stacking faults on the basal and prism
planes is as follows. Edge dislocations (Fig. 6.3(a) and (b)) can dissociate
into partial dislocations separated by a ribbon of fault on either of these
planes if stable faults exist. Atomic-scale computer simulation indicates that
the CRSS for glide will be low, particularly for the basal system. The screw
dislocation (Fig. 6.3(c)) can dissociate on either plane, but the relative values
of the stacking fault energy will dictate which plane is chosen. Thus, in mag-
nesium, which as noted above has a stable I, basal fault with
4=30—40mJ m 2 and a prism-plane fault, possibly unstable, with much
higher energy, the screw dislocation in its lowest energy configuration dis-
sociates on the basal plane. It would only be able to glide on the prism
plane by first constricting, as explained for the face-centered cubic structure
in section 5.3. The same situation is believed to exist in other basal-slip
metals such as beryllium, cadmium and zinc. In zirconium, on the other
hand, ab initio calculations indicate that v for the basal and prism faults is
200 and 140 mJ m™ 2, respectively, and so the screw dislocation dissociates
preferentially on the prism plane and would have to constrict in order to
cross-slip onto the basal plane. The screw dislocation in titanium is believed
to have a similar form.

In polycrystalline metals, basal and prism slip do not supply sufficient slip
modes to satisfy von Mises’ criterion that every grain should be able to plasti-
cally deform generally to meet the shape changes imposed by its neighbors
(section 10.9). This requires five independent slip systems, whereas basal and
prism slip provide only two each. Consequently, twinning and occasionally
other slip systems play an important role in the plasticity of these metals.
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6.2 Dislocations in Hexagonal Close-packed Metals a

A variety of twin modes with different habit plane and shear direction occur,
depending on the metal, temperature and nature of loading. A deformation
twin grows or shrinks under a resolved shear stress by the motion of steps
along its boundary. Such steps have dislocation character and are known as
twinning dislocations. They are described in more detail in section 9.7.

Slip with Burgers vector a + ¢ =1(1123) has been widely reported, although
only under conditions of high stress and orientations in which more favored
slip vectors cannot operate. The glide planes are {1011} (Fig. 6.1) and
{1122}. The magnitude of the Burgers vector is large and the planes are
atomically rough, which explains the high glide stress. It has been proposed
on the basis of the hard-sphere lattice model that the dislocation on {1122}
may dissociate into four partials with approximately equal Burgers vectors.
One has a core spread over three successive {1122} planes, within which the
atomic displacements are different. These three adjacent faults are bounded
by the three remaining partials. Significantly, the first dislocation is a zonal
twinning dislocation, which is a multi-layer step in a coherent twin bound-
ary which generates by its movement a twin. Thus, there may be a close rela-
tionship between (1123){1122} slip and twinning, although not necessarily
of the hard-sphere lattice form.

Vacancy and Interstitial Loops

As in the face-centered cubic metals, vacancies and interstitials in excess of
the equilibrium concentration can precipitate as platelets to form dislocation
loops. The situation is more complicated, however, because the relative den-
sity of atoms in the different crystallographic planes varies with c/a ratio and
stacking faults occur in some metals and not others, as discussed in the pre-
ceding section. The simplest geometries are considered here, starting with
basal-plane loops.

Condensation of vacancies in a single basal plane (Fig. 6.5(a)) results in
two similar atomic layers coming into contact (Fig. 6.5(b)). This unstable sit-
uation of high energy is avoided in one of two ways. In one, the stacking of
one layer adjacent to the fault is changed; for example B to C as in Fig. 6.5
(c). This is equivalent to the glide below the layer of one Shockley partial
with Burgers vector 2(1010) followed by glide above of a second Shockley of
opposite sign. The Burgers vector reaction is

oS+oA+Aoc—oS
e.g.
L [0001] + 1 [1T00] + L [1100] L [0001] (6.5)
2 - 2 N _
2 3 3 2
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A A A g A
B B B A o
A A A A
A B B—————_ B 5
A A A — B — A
B B B —m8m8m8m ™ = — B
A A A g .
@ B B (b) B 8
oS: extrinsic :SG A§ intrinsic :SA
I fault (E) P fault ()
A : A A A S A
B : 2 : B B - B : °
A : A A A——— - A
B —MM C _ B B ﬁc—/— B
5 B B A B
(c) B 2 B (d B ®
FIGURE 6.5

Formation of prismatic dislocation loops as a result of the precipitation of one layer of vacancies. (a) Disc-shaped cavity. (b) Collapse
of the disc bringing two B layers together. (c) Formation of a high-energy stacking fault E. (d) Formation of a low-energy stacking fault
h. The actual sequence of planes formed will depend on the plane in which the vacancies form, i.e. A or B. It is possible to have
loops of the same form with different Burgers vectors lying on adjacent planes. (After Berghezan, Fourdeux and Amelinckx, Acta
Metall. 9, 464, 1961.)

The resultant sessile Frank partial with b? =¢?/4~24?/3 surrounds the
extrinsic (E) stacking fault described earlier in this section. In the alternative
mechanism, a single Shockley partial sweeps over the vacancy platelet, dis-
placing the atoms above by 2(1010) relative to those below. The Burgers vec-
tor reaction is

Ao +o0S—AS

e.g.

1
5[“00] 20001]—> Dos] (6.6)

This sessile Frank partial with b?>~a? surrounds the type I, intrinsic fault
(Fig. 6.5(d)). The E-type loop of reaction (6.5) can transform to the I; form
by reaction (6.6), and since 7 is expected to be approximately three times
7y, the +(2023) loops may be expected to dominate. The dislocation energy
is proportional to b?, however, and the total energy change accompanying
reaction (6.6) is dependent on the +y values and loop size, in a similar man-
ner to the unfaulting of loops in face-centered cubic metals (section 5.5).
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6.2 Dislocations in Hexagonal Close-packed Metals

There is therefore a critical loop size for the reac-

A A A
tion, which may be influenced by factors such as B i B
stress, temperature and impurity content. A c A
Experimentally, both forms are observed in B 2 B
quenched or irradiated metals. (@) g B *B\
Precipitation of a basal layer of interstitials as in
Figs 6.6(a) and (b) produces an E-type fault sur- oS Extrinsic SO
rounded by a Frank partial loop with Burgers vec- ! fault (E)
tor 3{0001]. Again, provided the loop is large N
enough, this can transform to an I, loop by the g 2 : ’B\
nucleation and sweep of a Shockley partial A————" ¢ b a
according to reaction (6.6). The stacking B ﬁﬁ\'i—/— B
sequence is shown in Fig. 6.6(c). Interstitial loops (b S T
with Burgers vectors 1[0001] and £(2023) have
been seen in irradiated magnesium, cadmium SA  |ntrinsic AS
and zinc. In the latter two metals, perfect loops P fault (1)
with Burgers vector [0001] are also observed. : B :
They result from a double layer of interstitials, N ‘ c A
and as they grow during irradiation, some loops A c A
transform into two concentric 3[0001] loops, as i 8 i
shown in Fig. 6.7. © B B B

The atomic density of the basal planes is only

greater than that of the corrugated {1010} prism planes when c/a> /3,
suggesting that the existence of basal stacking faults with relatively low ~
aids the stability of the basal vacancy and interstitial loops in magnesium.
These faults are not believed to occur in titanium and zirconium, how-
ever, and large basal-plane loops are not expected. This is confirmed
experimentally by transmission-electron microscopy of irradiated speci-
mens, which reveals that basal-plane loops with a ¢ component in their
Burgers vector occur only rarely, for example at high levels of radiation
damage. Generally, both vacancy and interstitial loops with the perfect
Burgers vector £(1120) are seen. They lie on planes of the [0001] zone at
angles up to 30° from the pure-edge {1120} orientation. The {1120}
planes are neither widely-spaced nor densely-packed, and it is possible
that the point defects precipitate initially as single-layer loops on the
{1010} prism planes. The resulting stacking fault has a relatively high
energy and is removed by shear when the loops are small by the Burgers
vector reaction

(1010) + é(Tsz - % (1120) (6.7)

N~
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FIGURE 6.6

(@) Precipitation of a layer
of interstitials. (b) Prismatic
loop resulting from the
layer of interstitials: the
loop contains a high-
energy stacking fault £. (c)
Prismatic loop containing
low-energy stacking fault
h. (After Berghezan,
Fourdeux and Amelinckx,
Acta Metall. 9, 464, 1961.)
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m CHAPTER 6: Dislocations in Other Crystal Structures

FIGURE 6.7

Transmission electron micrographs of interstitial loops with b = [0001] in zinc. (a) Below the threshold
voltage at which electrons displace zinc atoms and (b) above. Loops B split into concentric loops v as
they grow. (From Eyre, Loretto and Smallman (1976), Proc. Vacancies ‘76, p. 63, The Metals Society,
London.)

The glissile loops thus produced can adopt the variety of orientations observed
in practice. The small loops shown in Fig. 2.8 are examples of vacancy loops
with b =1(1010) or (1120) in ruthenium irradiated with heavy ions.

6.3 DISLOCATIONS IN BODY-CENTERED CUBIC
METALS

In body-centered cubic metals (e.g. iron, molybdenum, tantalum, vanadium,
chromium, tungsten, niobium, sodium and potassium) slip occurs in close-
packed (111) directions. The shortest lattice vector, i.e. the Burgers vector of
the perfect slip dislocation, is of the type 3(111). The crystallographic slip
planes are {110}, {112} and {123}. Each of these planes contains (111)
slip directions and it is particularly significant that three {110}, three {112}
and six {123} planes intersect along the same (111) direction. Thus, if cross
slip is easy it is possible for screw dislocations to move in a haphazard way
on different {110} planes or combinations of {110} and {112} planes, etc.,
favored by the applied stress. For this reason slip lines are often wavy and
ill-defined (see Fig. 3.10). It has been found that the apparent slip plane var-
ies with composition, crystal orientation, temperature and strain rate. Thus,
when pure iron is deformed at room temperature the slip plane appears to
be close to the maximum resolved shear stress plane irrespective of the
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6.3 Dislocations in Body-centered Cubic Metals a

orientation, whereas when it is deformed at low temperatures, or alloyed
with silicon, slip tends to be restricted to a specific {110} plane.

An interesting feature of yielding is the asymmetry of slip. It is found, for exam-
ple, that the slip plane of a single crystal deformed in uniaxial compression
may be different from the slip plane which operates in tension for the same
crystal orientation. In other words, the shear stress to move a dislocation in
one direction in a slip plane is not the same as the shear stress required to
move it in the opposite direction in the same plane. Slip is easier when the
applied stress is such that a dislocation would move in the twinning sense
(see below) on {112} planes rather than the anti-twinning sense, even when
the actual slip plane is not {112}. Electron microscopy of metals deformed
at low temperature reveals long screw dislocations, implying that non-screw
dislocations are more mobile and that, as in the hexagonal close-packed
metals in section 6.2, screw dislocations dictate the slip characteristics.

Stable stacking faults have not been observed experimentally in the body-

centered cubic metals, and ab initio calculations and atomic-scale modeling

using interatomic potentials for these metals (section 2.4) have not revealed

minima corresponding to stable faults on the {110} and {112} ~-surfaces.

This is consistent with the ease of cross-slip. As in the hexagonal close-

packed metals (section 6.2), slip behavior in the body-centered cubic metals

is determined by the atomic structure of the core region of the screw disloca-

tion. Unlike the structure in the hexagonal case, however, the screw core in FIGURE 6.8

the body-centered cubic metals has a distinctive non-planar character. This ~ Orientation of the {110}
leads to high lattice resistance to glide of the screw dislocation and conse- @nd {112} planes of the
quently to strong temperature and strain-rate dependencies of the yield [111] zone and directions
stress, and to the other features described in the of their normats.
preceding paragraph.

[101]

The core structure is determined in part by the
crystal symmetry. The relevant symmetry for
the screw dislocation with b=%[111] is due to
the fact that the [111] direction is a three-fold
screw axis, i.e. three-fold rotation, as demon-
strated by the traces of the {110} and {112}
planes of the [111] zone in Fig. 6.8, plus a
+4111] displacement. The atomic structure of
the screw dislocation must exhibit this symmetry.
Note also that the [101] direction normal to the
(101) plane is a two-fold axis. Atomic-scale com-
puter simulation using interatomic potentials for
models of a variety of body-centered cubic metals
has revealed two different forms of core structure [101]
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FIGURE 6.9

Atomic positions and displacement differences (shown by arrows) for alternative core structures of a
screw dislocation with Burgers vector %[1 11]. The cores are energetically degenerate and were
obtained by computer simulation using an interatomic potential for molybdenum. (From Vitek and
Paicar (2009), Dislocations in Solids, vol. 14, p. 439 (ed. J. P. Hirth), North-Holland. Copyright (2009)
with permission from Elsevier.)

satisfying this symmetry. Examples of these are shown in Figs 6.9 and 6.10.
The circles in these plots represent atom positions projected on the (111)
plane of the paper. Shading denotes atoms on three adjacent (111) planes:
the interplanar spacing is b/3. The major atomic displacements are parallel
to the dislocation line [111], and the atom projections are essentially the
same as for a perfect crystal. In order to represent the [111] disregistry of
atoms in the core, arrows are drawn between pairs of neighboring atoms on
the projections. The length of an arrow is proportional to the difference of
the [111] displacements of the two atoms, and scaled such that for a dis-
placement difference of b/3, the arrow just runs from one atom to the other.
When the difference falls between b/2 and b, it is reduced by b. For the iso-
tropic elastic solution (equation (4.11)), the length of the arrows would
decrease in inverse proportion to the distance from the core center and
would exhibit complete radial symmetry. In the atomic model, the displace-
ments are concentrated on the three {110} planes of the [111] zone. The
cores are invariant with respect to the [111] three-fold axis.

The core of Fig. 6.10 is also invariant with respect to the [101] two-fold axis
(Fig. 6.8). The one in Fig. 6.9(a) is not, so that an equivalent core obtained
by applying a rotation of 180° about [101] must exist with the same energy:
this is the core shown in Fig. 6.9(b). The core structure existing in two sym-
metry-related forms in Fig. 6.9 is said to be degenerate or polarized; the core
in Fig. 6.10 is non-degenerate.

An interpretation of the concentration of atomic disregistry in the degenerate

core is that each of the three intersecting {110} planes contains a fault pro-

duced by displacement 5 b= {111]. Similarly, the non-degenerate core can be
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6.3 Dislocations in Body-centered Cubic Metals a

considered to spread as six unstable faults with displacement ©O-0~-@®~-0~-0" e

b on the three {110}planes. Although the core disregistry co e e
is distributed as either three 2 or six 2 cores in this simple o /o\k /O\‘_,'.\ 0 °
picture, these fractional dislocations do not bound O " O-@—0 -0 @
stable stacking faults. Thus, the core structure predicted by AN/ \ / Ny
computer simulation depends rather sensitively on the shape O\ ‘/‘\ B /O\_'/ O\_'/.\ h /O\ i ,,O
of the ~-surface, and different interatomic potentials for the 0-0 - —-0-0 -e
same metal have been found to produce both core types, as SN N N
is apparent from Figs 6.9 and 6.10. Calculations using ab © - ®-0-0~-@-0 -0
initio methods (section 2.4) are now considered more reli-  pFIGURE 6.10

able and indicate that the screw dislocation has the non-  atomic positions and displacement differences
degenerate form in iron, molybdenum, tantalum and  (shown by arrows) for the non-degenerate
tungsten. core structure of a screw dislocation with

Burgers vector [111]. The structure was
obtained by computer simulation using an
interatomic potential for molybdenum. (From
Vitek and Paidar (2009), Dislocations in
Solids, vol. 14, p. 439 (ed. J. P. Hirth), North-
Holland. Copyright (2009) with permission
from Elsevier.)

Glide of both types of screw core has been studied by apply-
ing stress to model crystals. The effect of resolved shear stress
is to remove the symmetry associated with the [101] two-fold
axis from the non-degenerate core (Fig. 6.10). Under an
increasing [111](101) shear stress tending to move the dislo-
cation to the right, the core disregistry extends to the right in a
similar form to the 2 fractional dislocation on the right in
Fig. 6.9(a). Under the reverse stress, the core extends to the left, as on the left-
hand side of the degenerate core in Fig, 6.9(b). Thus, the behavior under stress
is similar for the degenerate and non-degenerate screw core structures.
Although details of the core changes are dependent on the interatomic poten-
tials, it is found that under pure shear stress slip occurs on the {110} planes
with the asymmetry described above. Furthermore, computer simulation
shows that the screw core responds differently to stresses with different non-
shear components, in good agreement with the effects of compression and
tension found in experiment.

Similar studies of non-screw dislocations, on the other hand, show they
have cores which are planar in form on either {110} or {112} but do not
contain stable stacking faults. Like their face-centered cubic counterparts,
they are not sensitive to the application of non-shear stresses, and they glide
at much lower shear stresses than the screw dislocation.

Glide of the screw dislocation therefore controls yielding in the body-
centered cubic metals. Glide of a straight screw dislocation requires a high
applied stress, and so it moves by a kink-pair mechanism (section 10.3). The
effect of this is apparent in the strong temperature-dependence of the yield
stress in these metals. For example, the critical resolved shear stress (CRSS)
for single crystals of iron falls from approximately 250 to 20 MNm 2
between 77 and 295 K.
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m CHAPTER 6: Dislocations in Other Crystal Structures

Another set of perfect dislocations in the body-centered cubic metals are
those with Burgers vector (001), which has length a compared with +/3a/2,
where a is the lattice parameter. (001) dislocations are occasionally observed
in dislocation networks and are believed to occur from the reaction of two
perfect 1(111) dislocations:

[111] + % [11T] —>[100] (6.8)

N |~

Computer modeling of the edge dislocation has shown that the CRSS for
glide is much larger than that for the %(111) edge dislocation. (001) slip is
therefore unlikely to take part in plastic deformation at room temperature
and below. However, calculations for iron using anisotropic elasticity theory,
rather than the more approximate isotropic elasticity theory used in
Chapter 4, show that the elastic energy of a (001) dislocation falls strongly
as temperature increases towards 912°C, the a—+ transition temperature at
which the stable crystal structure of iron changes from body-centered cubic
to face-centered cubic. It is possible, therefore, that dislocations with
b= (001) play a significant role in the high-temperature plasticity of a-iron.

Deformation twinning is observed in all the body-centered cubic transition
metals when they are deformed at low temperature and/or high strain rate.
As noted with respect to the hexagonal close-packed metals in section 6.2,
and described in more detail in section 9.7, the atomic displacements that
allow growth of a twin occur by the glide of steps (twinning dislocations)
over the twin boundary plane. For the body-centered cubic metals twinning
occurs on {112}(111) systems. In section 1.2 it was shown that the stacking
sequence of {112} planes in the body-centered cubic structure is
ABCDEFAB. .. The homogeneous shear required to produce a twin is 1/4/2
in a (111) direction on a {112} plane. This shear can be produced by a dis-
placement of }(111) on every successive {112} plane i.e. the Burgers vector
of a twinning dislocation has the form 1(111) and the step height is a/+/6. It
is seen from Fig. 1.6(b) that if all the atoms in, say, an E layer and above are
translated by 1[111], then E shifts to C, F shifts to D, etc., and the new
sequence is ABCDCDE... A second translation on the adjacent plane dis-
places D to B, E to C, etc., resulting in ABCDCBC. .. Repetition of this trans-
lation on successive planes gives ABCDCBA. .., which is the stacking of a
twinned crystal. (This process is described in more detail in section 9.7.)

From the atom positions in Fig. 1.6(b), it is also clear that the single translation
1[111] which displaces E to C, F to D, etc., produces a different result from the
translation %[ﬁﬂ of opposite sense. The latter moves E to D and produces an
untwinned structure of high energy. There is thus an asymmetry with respect to
+(111) translations in the twinning and anti-twinning sense on {112} planes.

Dislocation loops formed by interstitials and vacancies are an important
product of rad#¥¥Hratamaged- @ere are no close-packed planes in the
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FIGURE 6.11

(@) Computer simulation of a cluster of 19 self-interstitial atoms in iron at 260 K showing the position of the cluster at two different
times (1 ps = 10~ '? seconds). The light and dark spheres are vacant sites and interstitial atoms respectively. The cluster consists of
[111] crowdions and moves along its [111] axis by forward and backward jumps of the individual crowdions, which remain bound
together during this one-dimensional migration. (b) Cluster in projection along the migration axis. (Courtesy Yu. N. Osetsky.)

body-centered cubic structure, and it has been suggested that the loops
nucleate with Burgers vector 2(110) on the {110} planes, which are the most
densely packed. In the absence of stable stacking faults on these planes, the
partial dislocation loops would shear at an early stage of growth to become
perfect by one of two reactions:

1 1 1

E(110>+5(001>—>§<111) (6.9)
1 110 +1 110 100 6.10
5( ) 5( ) — (100) (6.10)

Since dislocation energy is proportional to b? the resultant dislocation in
reaction (6.9) should be favored and loops with this Burgers vector have
been observed in many metals. However, atomic-scale computer simulation
(section 2.4) of damage production in displacement cascades shows that
small clusters of vacancies and self-interstitial atoms nucleate directly as
loops with Burgers vector #(111). An interstitial cluster consists of (111)
crowdion interstitials, i.e. each interstitial is an extra atom inserted in a close-
packed (111) atomic row, as illustrated by the computer-generated image of
a cluster of 19 interstitials in Fig. 6.11. The distortion is focused along the
crowdion axis and simulation predicts that these small loops move easily
along their glide prism. The one in Fig. 6viinHesnamoaeadispmbout 7a.
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m CHAPTER 6: Dislocations in Other Crystal Structures

In a-iron and its alloys an increasing proportion of loops are found to be of
(100) type when the irradiation temperature is raised above 300°C. This is
somewhat surprising in view of the magnitude of b”. It is believed to arise
from the effect of temperature on the anisotropic elastic constants of iron,
which, as noted above for straight dislocations, modifies the relative stability
of (111) and (100) dislocations.

6.4 DISLOCATIONS IN IONIC CRYSTALS

An important feature of dislocations in ionic solids is that electrical charge
effects can be associated with them. For example, compressive deformation
increases electrical conductivity and electric current is produced during plas-
tic deformation by the motion of charged dislocations. Ionic crystals contain
atoms of elements from different sides of the periodic table which transfer
electrons from one species to the other, producing sets of cations and anions.
One of the simplest forms is the rocksalt (NaCl) structure shown in Fig. 1.12,
in which each anion is surrounded by six cations and vice versa. It has a
face-centered cubic Bravais lattice with an anion—cation pair for each lattice
point, one ion at 0, 0, 0 and the other at 3, 0, 0. MgO, LiF and AgCl also
have this structure. It has been widely studied and its description provides a
basis for more complicated systems.

The shortest lattice vector is %(1 10), and this is the Burgers vector of the dis-
locations responsible for slip. The principal slip planes are {110}. Slip steps
are also observed on {100} and (occasionally) {111} and {112} planes
after high stresses, particularly at high temperatures and in crystals of high
polarizability, where the ionic nature of bonding decreases. Cross slip of
screw dislocations can occur only by glide on planes other than {110}, for
only one (110) direction lies in a given {110} plane.

Figure 6.12 shows a pure edge dislocation with a 1[110] Burgers vector and
(170) slip plane emerging on the (001) surface. The extra half-plane actually
consists of two supplementary half-planes, as shown. The ions in the planes
below the surface alternate between those shown in Figs 6.12(a) and (b).
The figure serves to illustrate that there is an effective charge associated with
the point of emergence of the dislocation on the (001) surface. Intuitively, if
itis —¢q in (a) it must be +g¢ in (b). It is readily shown that g = e/4, where e
is the electronic charge, as follows. In any cube of NaCl in which the corner
ions are of the same type, as in Fig. 1.12, the ions of that sign exceed in
number those of opposite sign by one. This excess charge of *e may be con-
sidered as an effective charge *e/8 associated with each of the eight corners.
In a cube with equal numbers of anions and cations, the positive and nega-
tive corners neutralize each other. Consider the dislocation of Fig. 6.12(a) to
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6.4 Dislocations in Ionic Crystals a

(a)

FIGURE 6.12

Edge dislocation in the sodium chloride structure, with the Na* cations represented by + and the
Cl™ anions by —. (a) Initial configuration of surface ions. (b) Configuration after removal of one
surface layer. (From Amelinckx (1979), Dislocations in Solids, vol. /l, p. 66, North-Holland.)

be in a block of crystal ABCD bounded by {100} faces. The effective charge
of the four corners A, B, C, D is (+e/8 — 3¢/8) = —e/4, and so the net effec-
tive charge at the (001) surface is (—e/4 —q). Remove a single layer of ions
to expose the new face A'B'C'D’ (Fig. 6.12(b)). The net effective charge is
now (—e/8 + 3¢/8 + q), which has been achieved by removing sixteen anions
and fifteen cations, i.e. —e. Since the initial charge must equal the final
charge plus the charge removed,

e

e
— =g ta-e (6.11)

and g = e/4. The same result holds for emergence on {110} planes.

When the edge dislocation glides on its (110) slip plane, there is no displace-
ment (and hence transport of charge) along the line, and the effective charge
of the emergent point does not change sign. For the same reason, kinks in
edge dislocations bear no effective charge. If the dislocation climbs by, say,
removal of the anion labeled n at the bottom of the extra half-plane in
Fig. 6.12(a), the configuration changes to the mirror image of that in
Fig. 6.12(b), and so the effective charge at the emergent point changes sign.
It follows that jogs carry effective charge, as demonstrated by the illustration
in Fig. 6.13 of two elementary (or unit) jogs of one atom height. The bottom
row of ions has an excess charge —e, which is effectively carried by the two
jogs. Thus, depending on the sign of the end ion of the incomplete row, an
elementary jog has a charge *e¢/2. It cannot be neutralized by point defects
of integer charge. Charged jogs attract or repel each other electrostatically,
and only jogs of an even number times the elementary height are neutral.
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[001]

FIGURE 6.13

Extra half-planes of the
edge dislocation in

Fig. 6.12 with a jog at
each end denoted by the
squares. (From Amelinckx,
Supplement Vol. 7, Series
X, Nuovo Cimento, p. 569,
1958.)

(Note that in divalent crystals such as MgO, the effective
charges are twice those discussed here.)

The formation energies of anion and cation vacancies
are in general different, and this results in a higher
probability of a jog being adjacent to a vacant site of
the lower energy. Dislocations thus have an effective
charge per unit length in thermal equilibrium, although
- this is neutralized in the crystal overall by an excess con-
centration of vacancies of opposite sign.

The situation with the %(1 10) screw dislocation is more

complicated. The ions in any particular (110) row are of
the same sign (see Fig. 1.12), and since displacements are parallel to the
Burgers vector, motion of the screw results in displacement of charge parallel
to the line. Consequently, both kinks and jogs on screw dislocations are
charged, the effective charge being *e/4 in each case. The effective charge of
the point of emergence on {110} and {100} surfaces is *e/8.

The reason underlying the choice of {110} as the principal slip plane is
unclear. It has long been considered that the glide system is determined by
the strength of the electrostatic interactions within the dislocation core. This
is partly supported by computer calculations. Although stable stacking faults
do not exist, the core may spread on the {110} planes to a width of about
6b, and thus consist of two fractional dislocations of Burgers vector %(110)
bounding an unstable fault. Spreading on the {100} planes does not occur
and is small on {111}. It has also been suggested that, since the ions of the
row at the bottom of the extra half-plane of the 3(110) edge dislocation all
have the same sign for {100} and {111} slip, but alternate in sign for
{110} slip, interaction between edge dislocations and charged impurities
may be an important factor.

6.5 DISLOCATIONS IN SUPERLATTICES

In many substitutional solid solutions of one element, A, in another, B, the
different species of atoms are arranged at random on the atomic positions of
the lattice. At a composition, A,B; _,, for example, any given lattice point is
occupied indifferently by either A or B atoms. There are some solid solutions,
however, particularly near stoichiometric compositions such as AB, AB,, AB3,
etc., in which a specific distribution of the atom species can be induced.
Below a critical temperature, atoms of one kind segregate more or less
completely on one set of lattice positions, leaving atoms of the other kind to
the remaining positions. The resulting arrangement can be described as a lat-
tice of A atoms interpenetrating a lattice of B atoms. A random solid solution
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FIGURE 6.14
Unit cells of the B2 and L7, superlattices.

is changed to an ordered alloy with a superlattice. Many ordered structures exist.
Two possible cubic superlattices produced by alloys of composition AB (e.g.,
CuZn, NiAl) and AB; (e.g., CusAu, NizAl) are shown in Figs 6.14(a) and (b).
These structures are given the crystallographic identification B2 and L1,,
respectively. In the disordered state, CuZn (3-brass) is body-centered cubic and
CusAu is face-centered cubic. In the ordered form, both are based on a simple
cubic Bravais lattice, one with two atoms per unit cell, the other with four.
During the nucleation and growth of ordered domains in a disordered crystal,
the lattice parameter change is usually sufficiently small for the atomic planes
to remain continuous. Thus, when domains meet, the A and B sublattices are
either in phase, i.e. in ‘step’, with each other or out of phase. The latter condi-
tion results in an antiphase boundary (APB). It has a characteristic energy
because the nearest-neighbor coordination of the superlattice is destroyed:

typical energies are similar to those of stacking faults, i.e. ~10—100 mJ m™°.

Antiphase boundaries also arise in the core of dislocations in ordered alloys
and this is of considerable technological significance because of their influ-
ence on the high temperature mechanical properties of these materials. At
low temperature, for example, L1, alloys behave like the face-centered cubic
metals in that the critical resolved shear stress (CRSS) is almost independent
of temperature, but as the temperature is increased the CRSS actually
increases, an effect known as the yield stress anomaly. If the order—disorder
transition temperature for the alloy is high enough, the yield stress reaches a
peak. This occurs between 800 and 1000 K in the case of NisAl and allows
Ni-based superalloys that contain NisAl precipitates (v phase) in a disor-
dered matrix (v phase) to be used in high temperature applications, e.g., tur-
bine blades. The key to this property is the core structure of the dislocations
responsible for slip.

In disordered L1, alloys, dislocation behavior is similar to that described for
face-centered cubic metals in Chapter 5, e.g., the unit slip vector is 2(110). In
the ordered state (Fig. 6.14(b)), 1(110) vectors are not lattice translation
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FIGURE 6.15

Arrangement of atoms in two adjacent atomic planes in an L7, superlattice: (a) (111) planes and (b) (100) planes.

vectors and so gliding dislocations leave behind a surface of disorder (APB).
This is illustrated schematically for the L1, superlattice in Fig. 6.15(a), which
shows the atomic arrangement in two adjacent {111} planes. Displacement
of one layer by 3(110) with respect to the other shifts X to Y and creates an
APB in which A atoms occupy nearest-neighbor sites to each other. Order
may be restored, however, by a second displacement %{110) which takes the
atom originally at X to Z.

Unlike the face-centered cubic metals, the L1, alloys are also commonly
observed to slip on the {100} planes. In this case, see Fig. 6.15(b), the shift
X to Y leaves nearest-neighbor bonds across the APB unchanged and the
second-neighbor changes are the major contribution to the APB energy,
implying that the APB energy is lower on {100} than {111}. Again, the sec-
ond shift Y to Z restores order.

Thus, the perfect dislocation moving on either {111} or {100} planes of the
L1, superlattice consists of two 3(110) superpartial dislocations joined by an
APB. This superdislocation has a Burgers vector (110), which is a lattice trans-
lation vector. The superdislocation is similar to two Shockley partials joined
by a stacking fault (section 5.3), for the spacing in equilibrium is given by a
balance between the elastic repulsive force between the two superpartials
and the opposing force due to the APB energy. Furthermore, if the two dislo-
cations are each dissociated into $(112) Shockley partials in the disordered
phase, as is possible in the face-centered cubic structure, they may retain this
form in the ordered L1, lattice. The superdislocation would then consist of
two extended dislocations connected by an APB. The slip system of the
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6.5 Dislocations in Superlattices m

APB on {111} APB on {111}

APB on {100}

(a) (b)

FIGURE 6.16
(@) Screw superpartial pair with an APB on a {111} plane. (b) Cross slip onto a {100} plane, starting
the formation of a Kear—Wilsdorf lock.

ordered structure is apparently stabilized by the dislocation behavior in the
disordered state, for the Burgers vector of the superdislocation is not the
shortest lattice vector, which is (100) in both structures in Fig. 6.14. In
the alloy of Fig. 6.14(a), which is body-centered cubic in the disordered state,
the Burgers vector is (111), given by two 4(111) components. The require-
ment that dislocations in superlattices travel in pairs separated by an APB
provides the strengthening mechanism referred to above. It arises because of
a ‘locking’ mechanism that affects the superpartial pair in the screw
orientation.

It was seen in section 5.3 that when the perfect %(110) dislocation in a face-
centered cubic metal dissociates into two Shockley partials, it is restricted to
glide in one {111} plane because the Burgers vector ¢(112) of a partial lies
in only one {111} plane. The glide plane can only change when constriction
occurs. The same behavior will apply to each superpartial in an L1, alloy if
there is a tendency to split into Shockley partials. The two 1(110) disloca-
tions will be separated by a {111} APB, as shown for a screw superdisloca-
tion in Fig. 6.16(a). If one of the superpartials is not dissociated, it can glide
on a {100} plane, as illustrated in Fig. 6.16(b). This cross slip from the
{111} (‘octahedral’) plane to the {100} (‘cube’) plane may be energetically
favorable if the APB energy is lower on {100} than {111}, which is the
implication of the simple geometrical picture of nearest-neighbor coordina-
tion described above. Furthermore, depending on the elastic anisotropy of
the crystal, the force (or torque) one partial exerts on the other as a result of
its stress field can enhance the stability of this arrangement.

When cross slip of a screw superdislocation onto {100} planes occurs, glide
of the remainder of the dislocation on the {111} system is restricted because
the Peierls stress resisting glide on {100} is much higher than that on {111}.
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FIGURE 6.17

Dislocation structure in Nis(Al,Hf) deformed at 400°C. The
(111) slip plane is the plane of the paper and the [101] slip
direction is indicated by b. The superdislocations are
elongated in the screw direction and are bowed out in the
(010) cube cross-slip plane. The edge segments are
shorter. The superdislocations consist of two 1[101]
superpartials with a spacing of a few nm. (Courtesy P.

Veyssiere.)

Dislocations in Other Crystal Structures

Thus, the applied stress has to be increased to
maintain plastic flow. The {100} cross-slipped seg-
ment is known as a Kear—Wilsdorf lock. The effect
of temperature that results in the yield stress
anomaly referred to above probably arises from
the ease with which a %(110) superpartial can cross
slip onto a {100} plane. If it is dissociated into
two £(112) Shockley partials on a {111} plane, it
will have to constrict, as mentioned above, and the
energy barrier for that can be overcome by thermal
activation. The result is increased hardening due to
cross slip with increasing temperature, as seen
experimentally. An example of the dislocation
structure in a crystal of Nis(AlLHf) deformed at
400°C by slip on a single slip system is shown in
the transmission electron microscope image taken
under dark-field conditions (section 2.2) in
Fig. 6.17. Not all L1, alloys exhibit anomalous
hardening, however, and this probably results
from a higher ratio of the APB energy on {100} to
that on {111} and a lower value of the elastic tor-
que. Finally, it should be noted that sessile screw
configurations equivalent to the Kear—Wilsdorf
lock have been found in ordered alloys with other
crystal structures.

6.6 DISLOCATIONS IN COVALENT CRYSTALS

The covalent bond formed by two atoms sharing electrons is strongly loca-
lized and directional, and this feature is important in determining the char-
acteristics of dislocations. Of the many covalent crystals, the cubic structure
of diamond, silicon and germanium is one of the simplest and most widely
studied. Compounds such as gallium arsenide (GaAs) have the same atomic
arrangement. Dislocations in these semiconductors affect both mechanical
and electrical properties.

The space lattice is face-centered cubic with two atoms per lattice site, one at
0, 0, 0 and the other at 1, 1, 1 (Fig. 6.18). In GaAs one atom would be gallium
and the four nearest-neighbors arsenic. Each atom is tetrahedrally bonded to
four nearest-neighbors, and the shortest lattice vector %(1 10) links a second-
neighbor pair. The close-packed {111} planes have a six-fold stacking
sequence AaBbCcAaBb. .. as shown in Fig. 6.19. Atoms of adjacent layers of

the same letter such as Aa lie directly over each other, and planar stacking
www.Iran-mavad.com
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6.6 Dislocations in Covalent Crystals m

(a)

FIGURE 6.18
(a) Diamond-cubic unit cell. (b) lllustration of the structure showing the tetrahedral bonds and
important crystallographic directions. The (111) planes are horizontal.

[111]

(017) plane

FIGURE 6.19
(017) projection of the diamond-cubic lattice showing the stacking sequence of the (111) planes and
the shuffle and glide planes defined in the text.

faults arising from insertion or removal of such pairs do not change the tet-
rahedral bonding. By reference to the face-centered cubic metals, the intrinsic
fault has stacking sequence AaBbAaBbCc... and the extrinsic fault has
AaBbAaCc AaBb. .. Faults formed between adjacent layers of the same letter
do not restore tetrahedral bonding and have high energy.

Perfect dislocations have Burgers vector 4(110) and slip on {111} planes.
They usually lie along (110) directions at 0° or 60° to the Burgers vector as a
result of low core energy in those orientations (see Fig. 8.6). From consider-
ation of dislocations formed by the cutting operations of section 3.2, two
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FIGURE 6.20
Perfect 60° dislocations of (a) the glide set and (b) the shuffle set. The extra half-planes are in the
lower part of each drawing. (After Hirth and Lothe (1968), Theory of Dislocations, McGraw-Hill.)

dislocation types may be distinguished. The cut may be made between layers
of either different letters, e.g., aB, or the same letter, e.g., bB. Following Hirth
and Lothe the dislocations produced belong to either the glide set or the shuf-
fle set, as denoted in Fig. 6.19. Diagrammatic illustrations of the two sets are
shown in Fig. 6.20. The dangling bonds formed by the unsaturated free bond
per atom along the core are apparent.

Dislocations of both sets are glissile and can dissociate, but the mechanism
of dissociation is different for the two cases. In the glide set, the perfect dis-
location dissociates into two £(112) Shockley partials separated by the intrin-
sic stacking fault, as in the face-centered cubic metals. Dissociation of the
shuffle dislocation is not so simple because of the absence of low-energy
shuffle faults. It occurs by the nucleation and glide of a Shockley partial of
the glide type between an adjacent pair of {111} layers. This results in a
fault of the glide set bounded on one side by a Shockley partial and on the
other by a Shockley partial and, depending on whether the glide fault is
above or below the shuffle plane, a row of interstitials or vacancies. It is
probable that this dislocation is less mobile than the glide-set dislocation
because movement of the row of point defects within the core can only
occur during slip by shuffling: hence the nomenclature. Climb, which
involves point defect absorption or emission, transforms shuffle-set disloca-
tions to glide-set dislocations, and vice versa. The stacking-fault energy in sil-
icon and germanium is sufficiently low (~50 mJm?) for dissociation to be
resolved directly in the transmission electron microscope (Fig. 2.5).

Computer calculations of the core energy of dislocations in model silicon
crystals suggest that the energy is reduced by bond reconstruction, a process
in which dangling bonds reform with others so that all atoms retain
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FIGURE 6.21
Two possible core configurations for the 30° partial of the glide set in silicon. (@) Dangling bonds
occur at atoms CCCC. (b) Reconstructed core. (From Markiund, Phys. Stat. Sol. (b), 92, 83, 1979,

approximately tetrahedral coordination. This is shown schematically in
Fig. 6.21 for the glide-set partial with b =£(112) at 30° to the line direction.
Reconstruction occurs by the dangling bonds at CCCC rebonding in pairs
along the core. The structure within the core affects the electron energy levels
and, therefore, the electrical properties of crystals containing dislocations.
Electronic paramagnetic measurements on deformed silicon indicate that
most sites along dislocation cores are reconstructed.

The Peierls stress for glide of straight dislocations in these crystals at low
temperature is high and so motion occurs by kink-pair nucleation and
migration (see section 10.3). The situation is more complex than in metals
because bond reconstruction in the core of dislocations of different orienta-
tion results in the occurrence of kinks of a variety of types. Computer simu-
lation has been used to investigate their form and energy, and to assist
speculation about the relative importance of perfect and partial dislocations
under different conditions of stress and temperature (see Further Reading).

6.7 DISLOCATIONS IN LAYER STRUCTURES

There is a large group of materials with a pronounced layer-type structure
which can arise in two ways. Firstly, when the binding forces between atoms
in the layers are much stronger than the binding forces between atoms in
adjacent layers, as, for example, in graphite. Secondly, when the arrangement
of the atoms in complex molecular structures results in the formation of
two-dimensional sheets of molecules as, for example, in talc and mica. There
are a number of important consequences of the layer structure. Slip occurs
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FIGURE 6.22

Electron transmission micrograph of dislocation ribbons in
talc. (From Amelinckx and Delavignette (1962), Direct
Observation of Imperfections in Crystals, p. 295,

readily in planes parallel to the layers and is
almost impossible in non-layer planes. The dislo-
cation arrangements and Burgers vectors are there-
fore confined mainly to the layer planes. The
weak binding between layers can result in stacking
faults of low energy and hence unit dislocations
are usually widely dissociated into partial disloca-
tions. Figure 6.22 shows an example of disloca-
tions in talc. In this material the unit dislocations
dissociate into four component partial disloca-
tions. The dislocations appear as ribbons lying in
the layer planes, and in some circumstances the
electron diffraction conditions allow all four par-
tials to be observed.

Many studies have been made of crystals with
layer structures. They are particularly convenient
to study experimentally because uniformly thick
specimens for transmission electron microscopy

Interscience.) can be obtained simply by cleavage along the
layer planes. The geometry of the Burgers vectors
and dislocation reactions are described using the
methods developed in preceding sections.

FIGURE 6.23 6.8 DISLOCATIONS IN POLYMER CRYSTALS

(a) The CH chain structure plastic deformation of crystalline and semi-crystalline polymers involves the

of the polyethylene
molecule. (b) (001)
projection of the unit cell of
orthorhombic polyethylene.

A [001]

| T [010]

(a) (b)
QO carbon @ hydrogen

mechanisms well established for other crystalline solids, namely dislocation
glide, deformation twinning and, in some cases, martensitic transformations.
As in preceding sections, dislocation behavior can be described after making

allowances for the structure. Polymer crystals
are distinguished by having strong covalent
bonding in the direction of the molecular
chain axis, and weak van der Waals bonding
in the transverse directions. This is illustrated
for the orthorhombic phase of polyethylene in
Fig. 6.23, which has been the subject of much
investigation. As a result of the relative stiff-
ness of the molecules, the important disloca-
tions lie along the [001] direction. The
shortest lattice vector is [001], and the screw
dislocation produces chain-axis slip by gliding
as a perfect dislocation on the (100),
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(010) and {110} planes. Transverse slip results from the glide of edge dislo-
cations, and although the shortest lattice vectors in the transverse direction
are [010] and [100], the slip vector is (110). This is because the perfect (110)
dislocation can dissociate into two Shockley partials with Burgers vector
approximately 2(110) bounding a stacking fault on a {110} plane. The fault
is believed to have low energy (<10 mJ m ), but the [001] screw is pre-
vented from dissociating by Frank's rule (section 4.4).

In bulk polyethylene, the (001) surfaces of a crystal consist of the folds
formed by the molecules leaving and re-entering the crystal. The folds are
aligned along certain crystallographic directions, and this influences the dis-
location behavior within the crystals by favoring slip planes containing
the folds.
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CHAPTER 7

Jogs and the Intersection of Dislocations

7.1 INTRODUCTION

It has been shown that dislocations glide freely in certain planes under the
action of an applied shear stress. Since even well-annealed crystals usually
contain a network of dislocations, it follows that every slip plane will be
threaded by dislocations and a dislocation moving in the slip plane will
have to intersect the dislocations crossing the slip plane. The latter are called
‘forest dislocations’. As plastic deformation proceeds, slip occurs on other slip
systems and the slip plane of one system intersects slip planes of the other
systems, thus increasing the number of forest dislocations. The ease with
which slip occurs depends, to a large degree, on the way the gliding disloca-
tions overcome the barriers provided by the forest dislocations. Since the dis-
location density in a crystal increases with increasing strain, the intersection
processes affect the rate at which the crystal hardens as it is strained. The ele-
mentary features of the intersection process are best understood by consider-
ing the geometry of the intersection of straight dislocations moving on
orthogonal slip planes.

7.2 INTERSECTION OF DISLOCATIONS

The intersection of two edge dislocations with Burgers vectors at right angles
to each other is illustrated in Fig. 7.1. An edge dislocation XY with Burgers
vector b, is gliding in plane Pyy. It cuts through dislocation AB with Burgers
vector b, lying in plane P4p. Since the atoms on one side of Pxy are dis-
placed by b, relative to those on the other side when XY passes, the intersec-
tion results in a jog PP (see section 3.6) parallel to b, in dislocation AB. The
jog is part of the dislocation AB and has a Burgers vector b,, but the length
of the jog is equal to the length of b;. The Burgers vector of dislocation AB is
parallel to XY and no jog is formed in the dislocation XY. The overall length
of the dislocation AB is increased by b;. Since the energy per unit length of a 137

Introduction to Dislocations. www.lran-mavad.com
© 2011 D. Hull and D. J. Bacon. Published by Elsevier Ltd. All rights reserved.
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P

(b)

(a)

PXY

FIGURE 7.1

Intersection of edge dislocations with Burgers vectors at right angles to each other. (a) A dislocation XY
moving on its slip plane Pyy is about to cut the dislocation AB lying in plane Pyg. (b) XY has cut
through AB and produced a jog PP’ in AB.

X
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FIGURE 7.2
Intersection of edge dislocations with parallel Burgers vectors. (a) Before intersection. (b) After
intersection.

dislocation is aGb”> where a2 1 (equation (4.24)) the energy of the jog is
aGb®, neglecting the effect of elastic interaction with adjacent dislocation
segments. However, a jog in an undissociated dislocation is a short length of
dislocation with practically no long-range elastic energy and « «1. The
energy is largely determined, then, by the core energy of the dislocation (sec-
tion 4.4). A value of a = 0.2 will be used here.

The rule that when two dislocations intersect each acquires a jog equal in direction
and length to the Burgers vector of the other may be used to analyze other cases.
The intersection of two orthogonal edge dislocations with parallel Burgers
vectors is illustrated in Fig. 7.2. Jogs are formed on both dislocations. The
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7.3 Movement of Dislocations Containing Elementary Jogs m

b,
&
1 B

A

@ Y ¢‘ tb,
FIGURE 7.3
Intersection of an edge dislocation AB with a right-handed screw dislocation XY. (@) AB moving in its
slip plane is about to cut XY. Planes threaded by XY form a single spiral surface. AB glides over this

surface and after crossing to A’B’ the ends do not lie on the same plane. Thus the dislocation must
contain a jog PP’ as shown in (b).

length of the jog QQ’ is equal to b,
and the length of the jog PP’ is
equal to b;. The increase in energy
as a result of the interaction is twice
that for the example above. The
intersections of a screw dislocation
with an edge dislocation and a
screw dislocation are illustrated in
Figs 7.3 and 7.4 respectively. The Y
sign of the screw dislocations is () (b)

represented by the arrows. For the

examples given all the screw dislocations are right-handed, according to the = FIGURE 7.4

definition given in section 1.4. Jogs are produced on all the dislocations  Intersection of screw
after intersection. dislocations. (a) Before
intersection. (b) After

The length, or ‘height’, of all the jogs described is equal to the shortest lat-
tice translation vector. These are referred to as elementary or unit jogs.

intersection.

7.3 MOVEMENT OF DISLOCATIONS CONTAINING
ELEMENTARY JOGS

Consider the jog segment PP’ formed on the edge dislocation AB in Fig. 7.1;
it is perpendicular to its Burgers vector b, and is therefore an edge dislocation.
The slip plane defined by dislocation AB has a step in it, but the Burgers vec-
tor is at all times in the slip plane. Thus, the jog will glide along with the dis-
location. The jogs formed on the edge dislocations XY and AB in Fig. 7.2 are
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FIGURE 7.5

Movement of a jog on a screw dislocation. Jog PP’ has a Burgers

vector normal to PP’ and is, therefore, a short length of edge
dislocation. The plane defined by PP” and its Burgers vector is

PP’RR’ and is the plane in which PP’ can glide. Movement of the
screw dislocation to A’QQ’B’ would require climb of the jog from

PP’ to QQ".

Jogs and the Intersection of Dislocations

parallel to the Burgers vectors of the disloca-
tion and therefore have a screw orientation.
They are kinks (see Fig. 3.17) lying in the
glide planes Pyxy and P43 and do not impede
the motion of the edge dislocations. Thus, an
important conclusion is that jogs in pure edge
dislocations do not affect the subsequent glide of
the dislocation.

Consider the jogs in the screw dislocations in
Figs 7.3 and 7.4. All the jogs have an edge
character. Since an edge dislocation can glide
freely only in the plane containing its line
and Burgers vector, the only way the jog can
move by slip, i.e. conservatively, is along the
axis of the screw dislocation as illustrated in
Fig. 7.5. It offers no resistance to motion of

the screw provided the screw glides on the same plane, i.e. the jog is a kink
(Fig. 3.17(b)). If the glide plane of the dislocation is different from that of
the jog (Fig. 3.17(d)), however, the screw dislocation can move forward and
take the jog with it only by a non-conservative process. As described in section
3.6, this process requires stress and thermal activation, and consequently the
movement of the screw dislocation will be temperature-dependent. At a suf-
ficiently high stress and/or temperature, movement of the jog will leave
behind a trail of vacancies or interstitial atoms depending on the sign of the
dislocation and the direction the dislocation is moving. A jog which moves
in such a direction that it produces vacancies is called a vacancy jog, and if it
moves in the opposite direction it is called an interstitial jog.

A screw dislocation can acquire both vacancy- and interstitial-producing jogs
during plastic deformation. A critical applied stress is required for disloca-
tion movement. Consider a screw dislocation with an array of jogs along its
length (Fig. 7.6(a)). Under an applied shear stress 7 acting in the slip plane
in the direction of the Burgers vector b, the dislocation bows out between the
jogs to a radius of curvature R given by equation (4.30) (Figs 7.6(b) and
(c)). Two relatively closely-spaced jogs experience a net sideways force from
the line tension of the dislocation segments meeting at the jogs (Fig. 7.6(c)),
making them glide together and resulting in annihilation (as in Fig. 7.6) or
formation of a jog of twice the unit length. The remaining jogs will be of
approximately uniform spacing, x. The forward force on a given jog is that
due to the applied stress on the two dislocation segments (of average length
x/2) on each side, and is 7bx from equation (4.27). Thus, when a point
defect is created and the jog moves forward one atomic spacing b, the work
done by the applied load is 7b°x. If the formation energy of a point defect at
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ﬂ Direction of movement

T{

Burgers vector

(c)

FIGURE 7.6

Movement of a jogged screw dislocation. (a) Dislocation with no applied stress. (b) Dislocation
segments pinned by jogs bowing under stress to radius of curvature A. (c) Projection in slip plane
showing force on jog due to unbalanced sideways components of line tension T.

\
O Vacancies

FIGURE 7.7
Glide of a jogged screw dislocation producing trails of point defects.

a jog is Ej, the line moves forward generating point defects (Fig. 7.7) at a crit-
ical stress

7o = Ef/b’x (7.1)
At temperatures greater than 0 K, thermal activation assists in the formation
of point defects and reduces the critical stress of equation (7.1).

Since E for interstitials is approximately two to four times that for vacancies
in metals (section 1.3), it is unlikely that interstitials are formed by jog
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m CHAPTER 7: Jogs and the Intersection of Dislocations

dragging. More probably, interstitial jogs glide along the line and combine.
There is a considerable body of evidence from measurement of physical prop-
erties, such as electrical resistivity, that vacancies are generated by plastic
deformation.

7.4 SUPERJOGS

A jog more than one atomic slip plane spacing high is referred to as a super-
(or long) jog. The movement of dislocations with such jogs can be divided
into three categories, depending on the jog height. They are illustrated in
Fig. 7.8. For a very small jog (Fig. 7.8(a)) with height of only a few, say n,
atom spacings, it may be possible for the screw dislocation to drag the jog
along, creating several vacancies at each atomic plane as described in the pre-
ceding section: the critical stress will be approximately n times the value given
by equation (7.1). For longer jogs, however, the maximum stress the disloca-
tion line can experience may not attain the critical value. The maximum stress

is reached when the segments bowing between

jogs of spacing x have their minimum radius of

curvature, see equation (4.30), which is x/2. If
% the maximum stress 2aGb/x (given by equation

(4.30)) is less than the critical stress nE}/bzx

given by equation (7.1), glide proceeds without
vacancy creation. Taking @ = 0.5 and noting that
Gb?® ~ 4 eV for many face-centered cubic metals
and ~5—10eV for many body-centered cubic
metals, it is apparent that vacancy generation
ceases for n greater than two or three. Under
these conditions, the behavior of the dislocation
depends on whether or not the superjogs are of
intermediate or large height.

At the maximum stress, the bowing segments
have radius of curvature R = x/2 and are approx-

FIGURE 7.8

Behavior of jogs with different heights on a screw dislocation
moving in the direction shown by the double arrow. (a) Small
jog is dragged along, creating point defects as it moves. (b)
Very large jog — the dislocations Y and XM move
independently. (c) Intermediate jog — the dislocations NP and
MO interact and cannot pass by one another except at a high
stress. (After Gilman and Johnston, Solid State Physics, 13,
147, 1962

imately semicircular in shape. The two disloca-
tion arms meeting at a jog are therefore parallel
to each other and perpendicular to their Burgers
vector. These edge elements of opposite sign
adopt a configuration similar to MO and NP in
Fig. 7.8(c), and can only pass each other if the
force per unit length 7b on each due to the
applied stress T exceeds the maximum value of
their mutual repulsion force (Fig. 4.14); that is
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b > 025Gb” (7.2)

27(1 —v)y

where y is the jog length MN. Jogs of relatively small length will be unable to
meet this criterion, and the gliding screw will draw out a dislocation dipole con-
sisting of two edge lines of the same Burgers vector and opposite sign, as
shown in Fig. 7.8(c). Long jogs, on the other hand, may have sufficiently large
values of y to satisfy condition (7.2). Their two edge arms can effectively
behave independently of each other as single-ended sources as illustrated in
Fig. 7.8(b) (see Chapter 8 on dislocation multiplication). For 7= 107> G, the
transition between these two forms of behavior is found from condition (7.2)
to occur at y ~ 60b.

Examples of these dislocation arrangements are shown in Fig. 7.9, which is a
transmission electron micrograph of a foil from a silicon-iron single crystal

1um

FIGURE 7.9

Transmission micrograph of thin foil of iron 3 per cent silicon alloy parallel to (011) slip plane. A,
dipole trails. Band C, pinching off of dipole trails. D, single-ended sources at large jogs. FP, jogged
screw dislocation. (From Low and Turkalo, Acta Metall. 710, 215, 1962.)
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m CHAPTER 7: Jogs and the Intersection of Dislocations

FIGURE 7.10
A mechanism for dislocation dipole formation. (After Tetelman, Acta Metall. 70, 813, 1962.)

deformed about 1% (7=45MNm ?, G=58 GNm ?). Slip occurred on
only one system, namely 1[TT11](011), and the foil is parallel to the (011)
slip plane. The [111] and [211] directions marked on the micrograph are
therefore parallel to the screw and edge orientations respectively. The screw
dislocations are relatively long and have numerous jogs along their length,
e.g. the dislocations FP. Examples of dislocation dipoles occur at points A
and they are aligned approximately in the [211] edge orientation as expected.
Single ended sources have been produced at site D.

Double cross slip, which is illustrated in Fig. 3.9, is a ready source of long
jogs. The segments of the dislocation which do not lie in the principal slip
plane have a predominantly edge character. More generally, any movement
of the dislocation out of the slip plane will result in the formation of jogs.
Another sequence of events which can lead to superjog and dipole formation
during plastic deformation is illustrated in Fig. 7.10. Two dislocations MM’
and NN’ with the same Burgers vector b but almost opposite line sense are
gliding on parallel slip planes of spacing y (Fig. 7.10(a)). The force on each
due to the stress field of the other acts to reorientate part of their lengths in
the glide plane to give parallel edge segments PP’ and RR’ of opposite sign
(Fig. 7.10(b)). If y is sufficiently small, a large shear stress 7 is required to
separate them (relation (7.2)). Furthermore, if an adjacent part of one line,
such as P’M’, is close to the screw orientation, it can cross slip to join the
other, such as R'N. The two segments which join pinch off and leave an
edge dipole PP’'R'R on dislocation MN’ and superjog TT on dislocation NM'
(Fig. 7.10(c)). (This reaction is best understood by placing an arrow on each
line to denote positive line sense, as in Fig. 7.10(a), and remembering from
the Burgers circuit construction (section 1.4) that dislocations of opposite
sign have the same Burgers vector but opposite line sense.) Dislocation
dipoles are a feature of the early stages of plastic deformation, when slip is
confined to one set of planes.
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7.5 Jogs and Prismatic Loops ﬂ

7.5 JOGS AND PRISMATIC LOOPS

Trails of defects and prismatic loops are often produced during plastic defor-
mation. In Fig. 7.9 numerous small loops, many of them elongated, can be
seen. This so-called debris is left behind by moving dislocations and is a
direct result of edge jogs on screw dislocations. /b

Two mechanisms of forming loops are possible. Firstly, by the diffusion
and coalescence of vacancies formed at a moving jog, as depicted in
Fig. 7.7. If the temperature is sufficiently high to allow diffusion of the
defects they can collect together to form a dislocation loop. At low tem-
peratures interstitials diffuse more readily than vacancies and providing
interstitials can be formed at an elementary jog, it will be possible to form
interstitial dislocation loops. Vacancy loops, however, form only at higher
temperatures because of the restricted rate of diffusion. The second mecha-
nism represents a further stage in the development of a dislocation dipole
formed either from an intermediate sized jog (Fig. 7.8(c)) or by the interac-
tion of dislocations on parallel slip planes (Fig. 7.10). Two stages in this
process are illustrated in Fig. 7.11. The dipole may pinch off from the line O000
by a cross slip mechanism similar to that of dislocations PM’ and R'N in
Fig. 7.10(b). The pinching off of dipoles can be seen at points C in Fig. 7.9.
Furthermore, the dipole may break up because of the mutual attraction of
the positive and negative edge dislocations of its two elongated sides. This ©
results in a row of prismatic loops (Fig. 7.11(c)). It requires climb, but can pFIGURE 7.11
occur by pipe diffusion at temperatures well below that for volume self- Formation of dislocation
diffusion (section 3.8). This enables material to be re-distributed around [oops from a dislocation
the dislocation core. The dislocation loops formed by the breaking up of dipole. (@) Dislocation
dipoles can be either vacancy or interstitial loops depending on the sign of dipole. (b) Elongated loop
the initial jog or dipole. and jogged dislocation.
(c) Row of small loops.

A prismatic loop is also released when a screw dislocation containing a
helical turn breaks free of the turn. The process is the reverse of that dis-
cussed in section 3.7, where it is shown that a screw dislocation can
absorb a loop and acquire a helical turn (see Fig. 3.23). The dislocation
line in the turn can only glide on the glide cylinder of the original loop,
i.e. on the cylinder with its axis parallel to the Burgers vector. The glide
direction of the screw dislocation is perpendicular to this and so the dislo-
cation will be pinned by the turn. In order for the dislocation to glide
away, the screw segments outside the turn will have to bow forward under
an applied stress and force the turn to close, thereby reversing the reaction
in Fig. 3.23.
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m CHAPTER 7: Jogs and the Intersection of Dislocations

Jogs and prismatic loops can also be formed by the movement of disloca-
tions past impenetrable obstacles in dispersion-strengthened alloys. In the
Orowan mechanism (discussed further in section 10.7), the gliding dislocation
wraps around the particle (Fig. 7.12(a)) and by mutual annihilation of seg-
ments on the far side leaves behind a shear loop, that is, one with its Burgers
vector lying in the loop plane. The Hirsch mechanism involves cross slip of
screw segments in order for the dislocation to bypass the obstacle. Cross slip
occurs two or three times, depending on whether or not the line is predomi-
nantly edge or screw in character (Figs 7.12(b) and (c)), and one or two pris-
matic loops are left near the particle. Prismatic loops are observed in
transmission electron microscopy of heavily deformed alloys. An Orowan
loop produced as in Fig. 7.12(a) can also be induced to cross slip (Fig. 7.12
(d)) and then react with the dislocation to form a prismatic loop and
another shear loop. Superjogs are produced in these cross slip processes, but
are only permanent features of the line in cases (b) and (d). (Again, a clear
understanding of the reactions involved is best obtained by defining the pos-
itive line sense, as in the first sketch of each sequence.)

Direction of
movement

=

~

G e
o5
2

ARl

(@) (b) (©) (d)

FIGURE 7.12

Dislocation motion past a particle either (a) without or (b), (c), (d) with cross slip. The Burgers vector in
(0), (), (d) is denoted by b. (After Hirsch and Humphreys (1969), Physics of Strength and Plasticity,

p. 189, M. I. T. Press.)
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7.6 Intersections of Extended Dislocations and Extended Jogs [ ¥/

7.6 INTERSECTIONS OF EXTENDED
DISLOCATIONS AND EXTENDED JOGS

The simple geometrical models of intersections illustrated in Figs 7.2—7.5
have to be modified somewhat when the intersecting dislocations are
extended into partials, as is expected to be the case in face-centered cubic
metals with low stacking fault energy (section 5.3). It is difficult to generalize
the problem because of the number of variants of intersections that are pos-
sible. One schematic example will be considered to illustrate some of the
principles involved. In Fig. 7.13 two dissociated dislocations intersect at right
angles, a situation equivalent to Fig. 7.3. The dislocations can only cut
through each other by constricting to form perfect unextended dislocations
in the region close to the intersection (Fig. 7.13(b)). The dislocations can
then separate and elementary jogs are produced on the extended dislocations
(Fig. 7.13(c)). It is clear that to form jogs on extended dislocations work will
have to be done to constrict the dislocations and so the energy of the jog
will depend on the stacking fault energy or, alternatively, on the spacing of
the partial dislocations. This problem has been reviewed by Friedel (1964)
and Nabarro (1967).

The jogs on the extended dislocations of Fig. 7.13 are shown as single seg-
ments for simplicity, but they also can dissociate in crystals where stacking
faults are possible. This can have an important effect on dislocation mobil-
ity. The configurations are easier to visualize clearly for long jogs, which are
able to obey the usual rules for dislocation reactions, and the same forms
are often assumed to be valid even for short jogs. The number of possibilities

b of unextended
T dislocation

(a) (b)

FIGURE 7.13

Intersection of extended dislocations. (a) Extended dislocations moving towards each other. (b)
Constriction of dislocations due to the interaction of the elastic strain fields of the leading partial
dislocations. (c) Formation of jogs on extended dislocations.
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oD

oD BD Bo

Bo
(a) (b) (c)

FIGURE 7.14

Formation of a glissile extended jog on an edge dislocation. The jog is constricted in (a) and extended
in (0). Positive line senses are denoted by arrows and the Burgers vectors by the letters next to the
lines. Orientation of the planes and directions is shown by the Thompson tetrahedron in (c).

is frequently large for a given crystal structure, and two examples for the
face-centered cubic case will suffice to indicate the principles involved. The
Burgers vectors and planes will be defined with reference to the Thompson
tetrahedron described in section 5.4.

Suppose an edge dislocation of Burgers vector (‘bv') BD extended on plane
BCD is intersected by a dislocation with bv BA to form two acute bends, as
illustrated in Fig. 7.14(a). It acquires a jog in the direction BA with bv BD,
which can dissociate on plane ABD into two Shockley partials with bv B~
and D, as shown in Fig. 7.14(b). Since Burgers vector is conserved at dislo-
cation junctions (equation (1.9)), this dissociation results in the formation
of positive and negative stair-rod partials with bv v« along the (110) lines
of intersection of the intrinsic stacking faults. The jog will be glissile on the
slip plane ABD, however. Suppose now a screw dislocation also with bv BD
and dissociated on BCD is intersected by a dislocation with bv CA to form a
jog and two acute bends, as illustrated in Fig. 7.15(a). The jog with bv BD is
parallel to CA and can dissociate in plane ACD into a sessile Frank partial
with bv B and a glissile Shockley partial with bv 8D, as shown in Fig. 7.15
(b). Furthermore, since dislocation energy is proportional to b” (equation
4.24), additional reduction in energy may occur by the Frank partial dissoci-
ating into a sessile stair-rod partial with bv 3 and a glissile Shockley partial
on plane ABC with bv Bé as depicted in Fig. 7.15(c). This jog is sessile.

Jogs may be formed with either acute or obtuse bends, and it is also possible
for extrinsic faults to occur. The dissociations can be analyzed using the
methods established here, and full details may be found in the original
paper of Hirsch (1962) and the reviews of Hirth and Lothe (1982) and
Amelinckx (1979).
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oD
(a) (b) (c) (d)

FIGURE 7.15
Formation of a sessile extended jog on a screw dislocation. Jog is constricted in (a), extended in (b), and fully extended in (c).
Orientation of the Thompson tetrahedron is shown in (d). Positive line sense and Burgers vector are given for all segments of line.

7.7 ATTRACTIVE AND REPULSIVE JUNCTIONS
FIGURE 7.16

The intersection of gliding dislocations with the forest dislocations that |nteraction forces on two
intersect their slip planes was treated in section 7.2 as a short-range effect  orthogonal screw dislocations
leading to jog and kink formation in the dislocation core. Dislocations can  Aand B Ais left-handed
interact at long range, however, by virtue of the stress fields they produce. and Bright-handed. (After
The treatment of section 4.6 considered this effect for straight, parallel dis-  Hartley and Hirth (1965),
locations only, but the same method may be Acta Met. 13, 79.)
applied to more general orientations. Although
conditions for attractive, repulsive and neutral
interactions may be determined, the analyses are
more complicated because the forces vary with
position along each line. Consider the simplest
case of two perpendicular screw dislocations A
and B parallel to the y- and z-axes, respectively,
and having a perpendicular spacing d (Fig. 7.16). y
The glide force per unit length on A is given by b ‘V / // b

times the stress o), due to B, and the force on B —>

is b times the stress o, due to A. These forces are A
readily obtained from equations (4.13) by
suitable choice of axes and origin, and are Gb*d/ T
2n(d?>+9%) and Gbd/2n(d> +2%) respectively. b
The force distribution on the dislocations when

they have opposite signs is shown schematically B
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in Fig. 7.16: the maximum force on each is Gb*/27d. As a crude approxima-
tion, the dislocation shape may be assumed to adopt the profile of the
force distribution, but external and internal stresses may modify this sub-
stantially. In particular, the line tension which tends to keep a dislocation
straight and the change in stress due to change of dislocation shape can be
very important for some configurations. However, the analysis based on
straight-line interactions elucidates two general points.

First, the forces shown in Fig. 7.16 are repulsive, and work would have to
be done, in addition to that required to form a jog, to bring about disloca-
tion intersection. It could be estimated by integrating the forces involved. If
the sign of one dislocation is reversed, the forces become attractive
and extra work would be required to separate the dislocations after intersec-
tion. Thus, dislocation intersections can result in attractive and repulsive
junctions. The extra work is the same for both forms for straight, rigid dislo-
cations. However, real dislocations change shape under their mutual inter-
action, and whereas the strength of the interaction is thereby reduced for a
repulsive junction, it is increased for an attractive one. Attractive junctions
are therefore stronger. Second, the two dislocations can react at their junc-
tion to form a segment with Burgers vector equal to the sum of the two
individual vectors. This may be energetically favorable if the geometry of
the vectors is such that b? is reduced. The process was illustrated in
Section 5.6 for two situations in the face-centered cubic metals in which the
product segment is sessile in the interesting glide planes, namely the Hirth
and Lomer locks. Two other favorable reactions occur where a sessile lock is
not formed. The glissile reaction is depicted in Fig. 7.17, where the 3(110)
Burgers vectors and {111} slip planes are defined by reference to the
Thompson tetrahedron (Fig. 7.17(c)). A dislocation of Burgers vector DC
gliding on plane BCD reacts with a forest dislocation with Burgers vector
CB and lying on plane ABC. From the line senses given, it is seen that a seg-
ment with Burgers vector DB is formed along the line of intersection of the
two planes. The segment is glissile on BCD, but its ends are restrained by
the forest dislocation. The gliding dislocation is therefore held unless the
applied stress is sufficient to overcome the reduction in dislocation energy
and shrink the segment to zero.

In the case of the collinear reaction sketched in Fig. 7.18, the two dislocations
MM’ and NN’ in (a) have the same Burgers vector but opposite line sense
when pulled into parallel alignment by attraction of their elastic stress fields.
The parallel segments annihilate along the line of intersection of the two
glide planes, with the result that after the reaction one dislocation runs from
M to N’ and the other from N to M/, as in (b). The collinear reaction is con-
sidered to be important in work hardening (section 10.8).

www.lran-mavad.com

dlgo guwnrigo g Ghgauisih gajo



7.7 Attractive and Repulsive Junctions [ ik!

plane BCD

plane ABC
(a) (b)
o
A
D
I A
B plane
ABC

(c)

FIGURE 7.17

(@) () Attractive junction formed by the reaction of a dislocation gliding on plane BCD with a forest
dislocation on plane ABC. Orientation of the Thompson tetrahedron is shown in (c). (d) Same reaction
when the dislocations are extended, showing the formation of an extended node (section 7.8). Burgers
vectors in (d) are indicated by the letters against each line.

Reactions that restrict dislocation motion also occur in the body-centered
cubic metals: two dislocations with Burgers vector b of the type 1(111)
can undergo a favorable reaction to form a product segment with b = (100).
For example, with reference to Fig. 7.19(a) and (b), suppose dislocation 1
with 5=1[T11] is gliding on the (011) plane and dislocation 2 with
b= %[ﬁ 1] is on the (101) plane. They can react favorably to form segment
AB along the [111] intersection line of the planes: it has b=[001], which
does not lie in either of the planes. One or both dislocations will glide away
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N’
plane BCD

plane ABC

(a) (b)

FIGURE 7.18

Attractive interaction resulting in the collinear reaction in which segments of dislocations with the same
Burgers vector but opposite line sense annihilate along the line of intersection of their glide planes in a
face-centered cubic metal. Orientation of the Thompson tetrahedron is shown in Fig. 7.17(c).

®

FIGURE 7.19

(@),(b) Formation of (001) segment AB by reaction of two %(111) dislocations 1 and 2 in a body-
centered cubic metal. (c) The segment can unzip under increasing applied stress. (d),(e) A third

%(1 11) dislocation reacts to convert AB to a %(1 11) screw dislocation. (f) The multi-junction can act
as a Frank—Read source if the applied stress is high enough. (After Bulatov et al., Nature 440, 1174,

2006. Reprinted with permission from Macmillan Publishers Ltd: copyright (2008).)
www.lran-mavad.com

dlgo Guwrigo g (hgauisils gajo



7.8 Extended Stacking-fault Nodes m

when the applied stress is sufficient to cause the junction segment to unzip,
as in Fig. 7.19(c). A more complex configuration can arise if another 1[111]
dislocation reacts with AB before it unzips. Dislocation 3 in Fig. 7.19(d) has
b=1[111] and glides on the (110) plane, which also contains the [111]
direction of AB. Dislocation 3 and AB react according to

[001] +1 [11T] =4[111] (7.3)

so that AB becomes a [111] screw segment (Fig. 7.19(e)). This results in a
considerable reduction in elastic energy, i.e. three segments each with
b=1(111) are reduced to one:

M) +1111] +1117] =4111] (7.4)

The nodes at A and B pin the screw segment and so it can act as a Frank—Read
source for dislocation multiplication (section 8.5) as the applied stress
increases (Fig. 7.19(f)). Dislocation dynamics computer simulation and trans-
mission electron microscopy have shown that the formation of multi-junctions
of this type is common during plastic deformation and have confirmed that
they are strong obstacles to dislocation motion.

7.8 EXTENDED STACKING-FAULT NODES

A particularly interesting dislocation structure, which provides a method for

direct experimental measurement of stacking-fault energy ~ in face-centered

cubic metals, is illustrated in Fig. 7.20. It arises when the dislocations form-  preuURE 7.20

ing an attractive junction such as that shown in Fig. 7.17(b) are extended.  [yionded node in a

The dislocation on plane BCD dissociates into two Shockley partials with (506 centered-cubic lattice.
Burgers vectors (bvs) Do and aC, and the other on plane ABC dissociates  Spaded area represents a
into partials with bvs Cd and éB. The junction segment with bv DB dissoci-  stacking fault. (After

ates into Shockley partials Do and aB, as shown in Fig. 7.17(d). The same  |yhe/an, Proc. Roy. Soc.
configuration arises if the two dislocations are considered extended before 4249 114, 1959,

they intersect, for then partial aC reacts with partial
Cd to form a stair-rod partial ad along the line of
intersection of the two planes: this in turn combines
with partial B to form the new Shockley partial with
Burgers vector aB, which is glissile on plane BCD and
is caused to bow by surface tension of the stacking
fault, as illustrated. Repeated intersections lead to a
network of extended and contracted nodes, such as
that in a deformed copper—aluminum alloy shown in
Fig. 7.21.

The partial dislocation at X in Fig. 7.20 has radius of oC

curvature R and experiences a line tension T tending
www.Iran-mavad.com
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FIGURE 7.21

Transmission electron micrograph of extended nodes in a copper 8 per cent aluminum alloy deformed
5 per cent at room temperature. (From Swann (1963), Electron Microscopy and Strength of Crystals,
p. 131, Interscience.)

to straighten it. This results in a force T/R per unit length acting towards the
center of curvature (equation (4.29)) and is opposed by force ~ per unit
length due to the ‘surface tension’ of the stacking fault on the convex side.
In equilibrium, therefore,

aGb?
R

T
TER (7.5)
The equilibrium spacing of Shockley partials well away from the node center
is approximately (equation (5.6))

Gb?

Although relation (7.5) takes no account of the effect on R of interactions
with other partials and the variation of T with position along the line, it can
be seen that R =~ 6d. The usual parameter measured experimentally is not R
but the internal dimension of the node, e.g. the radius of a circle passing
through X, Y, Z, (Fig. 7.20) and this can therefore be an order of magnitude
larger than d. Hence, it is possible to measure v from node observations in
alloys where direct measurement of partial spacing is normally impossible.
The more-accurate equations employed, and the structure of other forms of
nodes, have been reviewed by Amelinckx (1979).
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CHAPTER 8

Origin and Multiplication of Dislocations

8.1 INTRODUCTION

It has been estimated that an upper limit for the contribution the entropy of
a dislocation makes to the free energy of a crystal is ~ —2kT/b per unit length
(Cottrell, 1953). This compares with the strain energy contribution ~Gb”
(equation (4.24)). Since Gb’ is typically ~5 to 10eV and kT at 300K is
1/40 eV, the net free energy change due to dislocations is positive. Thus, unlike
the intrinsic point defects discussed in section 1.3, the thermo-dynamically
stable density of dislocations in a stress-free crystal is zero. Nevertheless,
apart from crystal whiskers and nanowires, and isolated examples in larger,
carefully prepared crystals of materials like silicon, dislocations occur in all
crystals. The dislocation density in well-annealed crystals (i.e. crystals which
have been heated for a long time close to their melting point to reduce the
dislocation density to a low value) is usually about 10* mm™2 (10'°m™?)
and the dislocations are arranged in networks as previously mentioned in
Chapter 1 (Fig. 1.22). A similar density of dislocations is present in crystals
immediately after they have been grown from the melt or produced by strain
anneal techniques. The origin of these dislocations is described in the next
section.

When annealed crystals are deformed there is a rapid multiplication of dislo-
cations and a progressive increase in dislocation density with increasing
strain. After large amounts of plastic deformation the dislocation density is
typically in the range 10" to 10" m™2. In the early stages of deformation
dislocation movement tends to be confined to a single set of parallel slip
planes. Later, slip occurs on other slip systems and dislocations moving on
different systems interact. The rapid multiplication leads to work hardening
(Chapter 10). The main mechanisms of dislocation multiplication are
described in this chapter.
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m CHAPTER 8: Origin and Multiplication of Dislocations

8.2 DISLOCATIONS IN FRESHLY GROWN
CRYSTALS

It is very difficult to grow crystals with low dislocation density because dislo-
cations are readily introduced during the growing process. There are two
main sources of dislocations in freshly grown crystals. First, dislocations or
other defects may be present in the ‘seed’ crystals or other surfaces used to
initiate the growth of the crystal. Any dislocations in a seed crystal which
intersect the surface of the seed on which new growth occurs will extend
into the growing crystal. Second, ‘accidental’ nucleation may occur during
the growth process. The main mechanisms which have been suggested are:
(a) heterogeneous nucleation of dislocations due to internal stresses gener-
ated by impurity particles, thermal contraction, etc.; (b) impingement of dif-
ferent parts of the growing interface; (c¢) formation and subsequent
movement of dislocation loops formed by the collapse of vacancy platelets.

The basic principle involved in the nucleation of dislocations by local inter-
nal stresses during growth and subsequent cooling is embodied in the spe-
cific example given in section 8.4. High local internal stresses are produced
when neighboring parts of the crystal are constrained to change their specific
volume. This can occur by neighboring regions expanding or contracting by
different amounts due to (a) thermal gradients, (b) change in composition,
or (c) change in lattice structure. An additional effect is the adherence of the
growing crystal to the sides of the container. When the stress reaches a criti-
cal value, about G/30, dislocations are nucleated. If this occurs at high tem-
perature the dislocations created will rearrange themselves by climb. It
should also be noted that under normal laboratory conditions there is every
possibility of isolated vibrations which will affect the growth process and
produce additional random stress effects.

The formation of dislocations by impingement is demonstrated during the
coalescence of two adjacent dendrites in the growing interface. Thus, the
dendrites may be misaligned or have growth steps on their surfaces so that
perfect matching is impossible and dislocations are formed at the interfaces.
Dislocations can also form at the interface between crystals of the same ori-
entation but different lattice parameter. The atoms at the interface adjust
their positions to give regions of good and bad registry, the latter being misfit
dislocations (section 9.6). These dislocations are a common feature of solid-
state phenomena such as precipitation and epitaxial growth.

The formation of dislocation loops by collapse of vacancy platelets follows
directly from previous descriptions of the formation of dislocation loops.
(Dislocation loops can also be created by exposing crystals to a flux of high
energy atomic particles such as neutrons and ions (see section 3.7), but this
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8.3 Homogeneous Nucleation of Dislocations a

process is not considered in this chapter.) In section 1.3 it was shown that,
when crystals are rapidly cooled from temperatures close to the melting
point, the high-temperature equilibrium concentration of vacancies is
retained in a supersaturated state and the vacancies can precipitate to form
dislocation loops. A critical supersaturation c, is required for the process. This
is illustrated by the fact that, in quenched specimens containing a sufficient
supersaturation of vacancies to form loops in the centre of grains, no loops are
found close to grain boundaries because the degree of super-saturation is
reduced by the migration of vacancies to the boundary. The solidification of
a melt involves the movement of a liquid—solid interface. There is normally
an appreciable temperature gradient in the solid. Immediately below the
interface the solid will be very close to the melting point and the equilib-
rium concentration of vacancies will be high. If this region cools sufficiently
rapidly a high density of vacancies will be retained and, providing the super-
saturation is greater than ¢,, loops will be formed. Speculation about this
mechanism revolves around whether or not the supersaturation is sufficient.
It is most unlikely to be so when the rate of cooling is slow. However, any
loops that are produced in the solid phase below the moving interface will
expand by climb due to diffusion of vacancies to the loop. Loops formed at
a large angle to the interface may eventually intersect the interface and the
two points of emergence formed in this way will act as a site for the propa-
gation of dislocations into the new crystal.

8.3 HOMOGENEOUS NUCLEATION
OF DISLOCATIONS

When a dislocation is created in a region of the crystal that is free from any
defects the nucleation is referred to as homogeneous. This occurs only under
extreme conditions because a very large stress is required. A method of esti-
mating the stress has been described by Cottrell (1953). Imagine that in a
crystal under an applied resolved shear stress 7, slip is nucleated by the crea-
tion on the slip plane of a small dislocation loop of radius r and Burgers vec-
tor b. The increase in elastic energy of the crystal is given by equation (5.11)
and the work done by the applied stress is 7r’7b. The increase in energy
associated with loop creation is therefore

- Levrin <z> —r’rh (8.1)
2 To

where v has been taken as zero for simplicity. The energy increases for small
1, reaching a maximum when dE/dr=0 at the critical radius r., and then
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m CHAPTER 8: Origin and Multiplication of Dislocations

decreases for increasing r. From differentiation of equation (8.1), r. satisfies
the relation

r= G [ln (ﬁ) + 1] (8.2)
4rT To
and the maximum energy is
E = L [ln (ﬂ) - 1} (8.3)
4 To

If the loop has at least the critical radius r,, it will be a stable nucleus and
will grow under the applied stress: E, is the activation energy for the process.

In the absence of thermal fluctuations of energy, nucleation can only occur
when E.=0, i.e. In(2r,/ro) =1 or r.=1.361,, and from equation (8.2) this
requires a stress

7=Gb/2nr, ~ G/10 (8.4)

in agreement with the theoretical shear stress estimate (equation (1.5)). At
the more realistic upper limit for the yield stress of 7~G/1000, equation
(8.2) gives r,~500b with ry taken as 2b. For a critical nucleus of this size,
equation (8.3) gives E.~650Gb?, which is about 3 keV for a typical metal.
Since the probability of energy E. being provided by thermal fluctuations is
proportional to exp(—E./kT) and kT=1/40 eV at room temperature, it is
clear that homogeneous nucleation of dislocations cannot occur at the yield
stress. Although stress concentrations in inhomogeneous materials many
raise the stress to the level required locally (section 8.4), plastic flow occurs
generally by the movement and multiplication of pre-existing dislocations.

8.4 NUCLEATION OF DISLOCATIONS AT STRESS
CONCENTRATORS

A well-known example of the nucleation of dislocations at a stress concentra-
tion is illustrated in Fig. 8.1. Spherical glass inclusions were introduced into
a crystal of silver chloride which was subsequently given a treatment to
reduce the dislocation density to a low value. The crystal was held at 370°C
to homogenize the temperature and remove any internal strains associated
with the inclusion, and then cooled to 20°C. The dislocations were revealed
by a decoration technique (section 2.3). The photograph shows a row of
prismatic dislocation loops, viewed edge on, which have been punched out
from around the glass inclusion during cooling. The axis of the loops is par-
allel to a (110) direction, which is the principal slip direction in this struc-
ture. The nucleation of the dislocations results from the stress produced
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8.4 Nucleation of Dislocations at Stress Concentrators m

FIGURE 8.1

System of prismatic dislocation loops produced in a recrystallized, dislocation-free crystal of silver
chloride to relax the strain field around the small glass sphere caused by differential contraction which
occurs during cooling. (From Mitchell (1958), Growth and Perfection of Crystals, p. 386, Wiley.)

around the sphere by the differential contraction of the crystal and the glass
inclusion during cooling.

Suppose that at 370°C the inclusion has unit radius; it will be resting in a
hole in the silver chloride also of unit radius. If the coefficient of expansion
of glass and silver chloride are «; and «, respectively, and «; < a5, then on
cooling to 20°C the natural radius of the inclusion will be 1 — 350a; and
the natural radius of the hole will be 1 — 350a,. If the inclusion is unyield-
ing this will result in a spherically symmetrical strain field in the surround-
ing matrix which can be estimated by analogy with the strain field around a
spherical hole with an internal pressure. Thus, consider a particle of radius
ri(l+¢) in a hole of natural radius r; in an infinite, isotropic elastic
medium. The displacement in the matrix is purely radial and decreases with
radial distance r as 7 2. Since the radial displacement u, equals er; at r=r,
the displacement at r (>r4) is

3
w="1 (8.5)

T

The displacement components in rectangular Cartesian coordinates (see sec-
tion 4.2) are therefore

X )4
— 3 — 3 —
Uy = €1 T_3 Uy = ery T_3 U, =ery T_3 (86)

where 1* =x* +y* + 2°. It is easy to show from relations (4.2)—(4.4) that the
strain field is one of pure shear, and that the maximum shear strain acting
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m CHAPTER 8: Origin and Multiplication of Dislocations

I

90°

FIGURE 8.2
Section of spherical,
misfitting particle.

intersection with
spherical particle

\

FIGURE 8.3

in a radial direction on a cylindrical surface with a radial axis occurs at the
interface between the inclusion and matrix and on a cylinder of diameter
/2r1. This is illustrated in Fig. 8.2. The magnitude of the corresponding
shear stress is

Tmax = 3G (8.7)

Taking a; =34 X 10”7 deg™" for the glass particle and o, =345 X 10~ 7 deg ™!
for the silver chloride crystal gives ¢ ~ 0.01 after the crystal and inclusion
have cooled to 20°C and

G
Tmax = 37 (88)

W

This is close to the stress required to nucleate dislocations. The dislocations
formed in this way at the interface will move away under the influence of
the strain field of the inclusion.

The mechanism for formation of the loops is as
oylindrical surface with follows. Under the action of 7., in the slip
maximum resolved shear  direction a small half loop forms on the surface
stress in direction OA . . T . .

of the glide cylinder indicated in Fig. 8.3. The for-

/— ward edge component glides away from the inter-
face under the influence of a stress field which

\2r, decreases in intensity with increasing distance
— from the interface. The screw components of the

loop, which are parallel to the axis of the glide
cylinder, experience a tangential force which
v, causes them to glide in opposite directions

~

around the surface of the cylinder. Dislocation
movement is restricted to the glide cylinder
because any other motion requires climb. When the two ends of the disloca-
tion intersect they annihilate and a dislocation loop will be produced. This
is a positive (interstitial) prismatic dislocation loop for ¢ > 0 and as it

glide cylinder

-
Burgers vector

(a) (b) (©)

Mechanism of formation of prismatic loops around an inclusion. (a) Small loop at the surface of inclusion. (b) Loop expands around
glide cylinder. (c) Prismatic loop. Burgers vector is parallel to the cylinder axis.
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8.5 Multiplication of Dislocations by Frank—Read Sources a

moves away along the slip axis it is effectively moving material away from
the inclusion and so relaxing the strain field. The process can be repeated to
produce a series of loops. More complex patterns are obtained when glide
cylinders of different orientation exist at one particle.

Although this is a somewhat ideal model, dislocation generation at local
regions of stress concentration is common. When inclusions and precipitates
have a complex shape the associated strain field and resultant dislocation
distribution is correspondingly more complex and tangled arrays of disloca-
tions are produced. Dislocation generation also occurs in alloys when preci-
pitates lose coherency (see section 9.7) provided the misfit is sufficiently
large (¢ ~ 0.01 —0.05) for spontaneous nucleation, i.e. zero activation
energy. Other stress concentrators such as surface irregularities, cracks, etc.,
have a similar effect (section 10.10).

8.5 MULTIPLICATION OF DISLOCATIONS BY
FRANK-READ SOURCES

To account for the large plastic strain that can be produced in crystals, it is
necessary to have regenerative multiplication of dislocations. Two mechanisms
are important. One is the Frank—Read type sources to be described in this sec-
tion and the other is multiple cross glide described in section 8.6.

The first model proposed by Frank and Read resembles the model proposed
to account for the role of dislocations in crystal growth. In an irregular array

slip step ‘

slip plane | .-
Zl

¢

\_/ (a) (b)

FIGURE 8.4
Single ended Frank—Read source. (a) Dislocation lying partly in slip plane CEF. (b) Formation of a slip
step and spiral dislocation by rotation of BC about B.
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m CHAPTER 8: Origin and Multiplication of Dislocations

(b) (©)

(e)

FIGURE 8.5
Diagrammatic
representation of the
dislocation movement in
the Frank—Read source.
Unit slip has occurred in
the shaded area. (After
Read (1953), Dislocations
in Crystals, McGraw-Hill.)

ReoGbit some dislocations lie partly in their slip planes

and partly in other planes. This is illustrated in
Fig. 8.4(a). The length BC of the edge dislocation
ABC lies in the slip plane CEF and can move freely
in this plane. The length AB is not in the slip
plane and is treated as sessile. Thus BC will be
anchored at one end and can only move by rotat-
ing about B. The dislocation will tend to wind up
into a spiral as illustrated in Fig. 8.4(b). Two
things are noted about this mechanism:

(a) Each revolution around B produces a dis-
placement b of the crystal above the slip
plane relative to that below. The process is
regenerative since it can repeat itself so that n
revolutions will produce a displacement nb. A

b large slip step will be produced at the surface
of the crystal.

(b) Spiraling around B results in an increase in
the total length of dislocation line. This
mechanism is similar to the single ended
sources mentioned in section 7.4.

(d)

@ The well-known Frank—Read source is an extension
of the above mechanism to a dislocation line held
at each end as illustrated in Fig. 8.5. The segment AB has the slip plane indi-
cated in Fig. 8.5(a), i.e. its Burgers vector lies in this plane, and is held at
both ends by an unspecified barrier, which may be dislocation intersections
or nodes, composite jogs, precipitates, etc. An applied resolved shear stress 7
exerts a force 7b per unit length of line and tends to make the dislocation
bow out as described in section 4.4: the radius of curvature R depends on
the stress according to equation (4.30). Thus, as 7 increases, R decreases and
the line bows out until the minimum value of R is reached at the position
illustrated in Fig. 8.5(c), where now the slip plane is represented by the
plane of the paper. Here, R equals L/2, where L is the length of AB, and,
with a = 0.5 in equation (4.30), the stress is

Tmax = Gb/L (8.9)

As the line continues to expand at this stress, R increases and so the disloca-
tion becomes unstable, for equation (4.30) cannot be satisfied unless 7 is
reduced. The subsequent events are shown in Fig. 8.5(d)—(f). The disloca-
tion forms a large kidney-shaped loop, and the segments m and n annihilate
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8.5 Multiplication of Dislocations by Frank—Read Sources a

FIGURE 8.6

Frank—Read source in a silicon crystal. The dislocations have been revealed by the decoration
technique described in section 2.3. (From Dash (1957), Dislocation and Mechanical Properties of
Crystals, Wiley.)

on meeting. This occurs because m and n, which move in opposite directions
under the same stress, have the same Burgers vector but opposite line sense.
The result is a large outer loop, which continues to expand, and a regener-
ated dislocation AB, which repeats the process.

Figure 8.5 and equation (4.30) neglect the orientation of the Burgers vector
in the slip plane: as explained in section 4.5, the bowing line usually adopts
in practice a shape elongated in the Burgers vector direction. An excellent
example of a Frank—Read source is illustrated in Fig. 8.6. The dislocation is
held at each end by other parts of the dislocation network. These are not in
the {111} plane of the loops and are consequently out of focus. The disloca-
tion lines tend to lie along the (110) directions in which they have a mini-
mum energy, indicating the strong anisotropy of the dislocation core energy
of this material.

The expression for 7,.x shows that dislocation segments of length L ~ 10%b
can act as Frank—Read sources at applied stresses close to the yield stress.
Considerable multiplication probably occurs by the Frank—Read mecha-
nism, but additional processes must occur to account for the experimental
observations. For example, the Frank—Read source does not explain the
broadening of slip bands which is a common feature of the early stages of
deformation of some crystals, e.g. iron and lithium fluoride, and is described
in the following.
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m CHAPTER 8: Origin and Multiplication of Dislocations

FIGURE 8.7

Lateral growth of glide bands in lithium fluoride. (a) Glide band formed at a single loop. Large pits
show the position of the loop. Small pits show that new dislocations lie on both sides of the glide
plane of the original loop. (b) Widening of a glide band. (From Gilman and Johnston, Solid State
Physics 13, 147, 1962.)

8.6 MULTIPLICATION BY MULTIPLE CROSS GLIDE

An example of the multiplication of dislocations associated with the initia-
tion and broadening of a slip band is shown in Fig. 8.7, from work by
Gilman and Johnston on lithium fluoride. The dislocations are revealed by
the etch pit technique (section 2.3); a succession of etching and deformation
treatments revealed the growth of the slip band. Initially (Fig. 8.7(a)), the
slip band started as a single loop of dislocation and the two points of emer-
gence are revealed by the two large pits. Deformation resulted in the forma-
tion of dislocations on each side of the original loop. Since the band of
dislocation etch pits has a finite width, it follows that the dislocations do
not lie on the same glide plane, but on a set of parallel glide planes.
Widening of a glide band is shown in Fig. 8.7(b); after the first deformation
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8.7 Multiplication by Climb [ L/

the band was W, wide and after the second deformation W, wide. The dislo-
cation density is approximately uniform throughout the band.

The widening can be accounted for by a process called multiple cross glide. In
principle, it is the same as the process illustrated in Fig. 3.9. Thus, a screw
dislocation lying along AB can cross glide onto position CD on a parallel
glide plane. If the stress is greater on the primary plane the long jogs AC and
BD are relatively immobile. However, the segments lying in the primary slip
planes will be free to expand and can each operate as a Frank—Read source.
A similar mechanism can result from cross-slipped segments in particle
strengthened alloys (Fig. 7.12). When cross glide can occur readily, the
Frank—Read sources may never complete a cycle and there will be one con-
tinuous dislocation line lying on each of many parallel glide planes, con-
nected by jogs. Thus, it is possible for a single dislocation loop to expand
and multiply in such a way that the slip spreads from plane to plane, so pro-
ducing a wide slip band. Multiple cross glide is a more effective mechanism
than the simple Frank—Read source since it results in a more rapid
multiplication.

8.7 MULTIPLICATION BY CLIMB

Two mechanisms, involving climb, which increase the total dislocation
length, have been described already; (a) the expansion of a prismatic loop
and (b) the spiraling of a dislocation with a predominantly screw character
(section 3.7). A regenerative multiplication known as the Bardeen—Herring
source can occur by climb in a similar way to the Frank—Read mechanism
illustrated in Fig. 8.5. Suppose that the dislocation line AB in Fig. 8.5 is an
edge dislocation with Burgers vector perpendicular to the plane of the paper
in Fig. 8.5(b)—(f), i.e. the plane shown in Fig. 8.5(a) is not the slip plane of
AB but contains its extra half-plane. If the dislocation line is held at A and B,
the presence of an excess concentration of vacancies will cause the disloca-
tion to climb, the force causing climb being given by equation (4.40). An
additional condition to the normal Frank—Read source must be satisfied if
this process is to be regenerative; the anchor points A and B must end on
dislocations with screw character. If this were not so, one cycle of the source,
Fig. 8.5(e), would remove the extra half-plane without creating a new dislo-
cation along AB. Bardeen—Herring sources have been observed experimen-
tally, as illustrated in Fig. 8.8 for an aluminum—3.5 per cent magnesium
alloy quenched from 550°C into silicone oil. The large concentration of
excess vacancies has resulted in the formation of four concentric loops. Each
loop represents the removal of a plane of atoms. More complicated source
arrangements have also been observed in this and other alloys (see ‘Further
Reading’).
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FIGURE 8.8

Transmission electron micrograph of concentric loops formed at a climb source in aluminum—3.5 per
cent magnesium alloy quenched from 550°C. (From Westmacott, Barnes and Smallman, Phil. Mag. 7,
1585, 1962.)

For a dislocation line bowing by slip, the work done by the applied shear
stress balances in equilibrium the increase in line energy (section 4.5).
Similarly for bowing by climb, the increase in line energy is balanced by the
gain in energy due to the loss or creation of point defects (section 4.7).
Hence, from equations (4.30) and (4.40), the chemical force per unit length
which produces a radius of curvature R by climb is

bkT c aGh?
fo ?1“(5> - (8.10)

By analogy with the analysis for the Frank—Read source, the critical vacancy
supersaturation required to operate a Bardeen—Herring source of length L is

therefore
c 2aGbS)

where o ~ 0.5. Consider a typical metal with Q=5b> and Gb>=5eV. At
T=600K, kT~0.05¢V and equation (8.11) gives In(c/co) ~ 100b/L. Thus,
for L =10%b, c/co =1.11, and for L = 10b, ¢/c, = 1.01. These are small super-
saturations in comparison with those met in rapid quenches, for which ¢/cy
can be as large as ~10%, and Bardeen—Herring sources can probably operate
throughout the period of fast cooling.
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8.8 GRAIN BOUNDARY SOURCES

An important source of dislocations during plastic flow in poly-crystalline
materials is the boundary region between the grains. Many investigations
have shown that dislocations can be emitted from grain boundaries, and it
is probable that they subsequently multiply within grains by the multiple
cross-slip process (section 8.6). Several mechanisms may be involved in the
emission. In low-angle boundaries (Chapter 9), the segments of dislocation
networks forming the boundary can act as Frank—Read (or Bardeen—Herring)
sources. Another possible source is an adsorbed lattice dislocation which is
stabilized at the boundary in the stress-free state by the boundary structure.
The resulting boundary ledge can provide sites for dislocation nucleation
under stress, for the reduction in boundary area at nucleation reduces the acti-
vation energy. The dislocations generated by sources within a grain produce
large stress concentrations when piled up at the grain boundary (section
10.9): these can trigger boundary sources at relatively low applied stress. It
has also been established that migrating grain boundaries generate disloca-
tions in the lattice they pass through. Gleiter et al. (1980) have proposed that
these dislocations are nucleated by accidental mispacking of atoms at the
boundary when one grain grows at the expense of another. This process pro-
vides a source for dislocations in crystals grown in the solid state, such as
those formed by recrystallization and phase transformations.
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CHAPTER 9

Dislocation Arrays and Crystal Boundaries

9.1 PLASTIC DEFORMATION, RECOVERY AND
RECRYSTALLIZATION

Plastic deformation of crystalline materials leads to the formation of three-
dimensional arrays or distributions of dislocations which are characteristic
of (1) crystal structure of the material being deformed, (2) temperature of
deformation, (3) strain and (4) strain rate. Additionally, such features as
grain boundaries, precipitates, and stacking fault energy affect the distribu-
tion of the dislocations. Two distributions are illustrated in Fig. 9.1, which
shows the effect of deforming pure iron specimens at 20°C and —135°C,
respectively. Deformation at 20°C has resulted in the formation of dense tan-
gles of dislocations arranged in walls surrounding regions or cells almost free
from dislocations. The cell size reaches a limit in the early stages of deforma-
tion and changes only slightly thereafter. The cell walls tend to orient
themselves in certain crystallographic directions. Deformation at —135°C
produces a much more homogeneous distribution of dislocations.

The hardening of crystals during plastic deformation is due to the increase in
dislocation density and the mutual interaction between dislocations
(section 10.8). Most of the work done by the external load during plastic
deformation is dissipated as heat, but a small proportion is retained in the
material as stored energy. This is accomplished by an increase in elastic strain
energy resulting from the increase in dislocation density. An additional,
small amount of energy is stored when point defects are produced during
plastic deformation. The energy only remains stored within a crystal if the
temperature is sufficiently low for the atoms to be effectively immobile, i.e.
T =< 0.3 T,,: the plastic deformation that meets this requirement is known as
cold-work. The stored energy can be released if the dislocations rearrange
themselves into configurations of lower energy. These are called low-angle
boundaries and can be represented by a uniform array of one, two, three or
more sets of dislocations (sections 9.2 and 9.3). They separate regions of the 171
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CHAPTER 9: Dislocation Arrays and Crystal Boundaries

(a)

FIGURE 9.1

Dislocation arrangements produced by plastic deformation of iron. (a) Dense tangles and dislocation
free cells formed after 9 per cent strain at 20°C. (b) Uniform array of straight dislocations formed after
7 per cent strain at —135°C. (From Keh and Weissmann (1963), Electron Microscopy and Strength of
Crystals, p. 231, Interscience.)

crystal which differ in orientation by <5°. A considerable amount of energy
is released by the local rearrangement of the dislocations in the tangles and
further release of energy occurs when low-angle boundaries are formed. Both
these processes involve climb of the dislocations and will occur, therefore,
only when there is sufficient thermal activation to allow local and long-range
diffusion of point defects, i.e. T = 0.3 T,,. These changes are accompanied by
a pronounced softening of the dislocation-hardened crystal. The process is
called recovery and it occurs when a plastically deformed crystal is heated to
moderate temperatures. The later stages of the recovery process in which
low-angle boundaries are formed is called polygonization.

When a heavily cold-worked metal is heated above a critical temperature
new grains with relatively low dislocation density are produced in the ‘recov-
ered’ structure, resulting in a process called recrystallization. Large-angle grain
boundaries with a misorientation =10° are produced. The sequence of photo-
graphs in Fig. 9.2 illustrates the change from a heavily deformed structure
with a uniform distribution of tangled dislocations to a recrystallized struc-
ture containing large and small angle grain boundaries. The grain structure is
small immediately after recrystallization but grows progressively with longer
annealing times and higher temperatures. This is called grain growth and
results in a small reduction in energy because the total area of grain bound-
ary is reduced. Some recent advances in our knowledge of the dislocation
content of high-angle grain boundaries are described in section 9.6.

The basic process in the formation of low-angle boundaries is illustrated in
its most simple form in Fig. 9.3. Consider a crystal which is bent about its
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9.1 Plastic Deformation, Recovery and Recrystallization [/

FIGURE 9.2

Transmission electron micrographs illustrating the structure of deformed and annealed 3.25 per cent
silicon iron. (a) Approximately uniform distribution of dislocations in a crystal rolled 20 per cent.

(b) Formation of small sub-grains in rolled material annealed 15 min at 500°C. (c) As for (b) annealed
15 min at 600°C. (d) As for (b) annealed 30 min at 600°C. (From Hu, Trans. Met. Soc. AIME 230,
572, 1964.)

z-axis: the resulting dislocations will be distributed randomly on the glide
planes and there will be an excess of edge dislocations of one sign, as illus-
trated in Fig. 9.3(a). Excess dislocations of one sign, formed in this case as a
result of the strain gradient due to bending, are known as geometrically neces-
sary dislocations. The energy of the crystal can be reduced by rearranging the
dislocations into a vertical wall to form a symmetrical tilt boundary, Fig. 9.3(b)
(section 9.2). Alternatively, imagine that a thin wedge-shaped section, sym-
metrical about the plane x =0, is cut from the perfect crystal ABCD, Fig. 9.4
(a), and that the two cut faces are then placed together as in Fig. 9.4(b).
This is geometrically the same as the tilt boundary in Fig. 9.3(b) and illus-
trates an important feature of small angle boundaries, namely that they have
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CHAPTER 9: Dislocation Arrays and Crystal Boundaries

B
A z /
(a)
B
A z /
(b)
FIGURE 9.3

Formation of a low-angle boundary. The orientation of the slip
planes is denoted by a cross. (a) Bent crystal with random

(b)

FIGURE 9.4

Geometry of the formation of a symmetrical tilt boundary. The
relative rotation of the two crystals is produced by cutting a
wedge from the perfect crystal.

dislocations. (b) Rearrangement of dislocations to form a
symmetrical tilt boundary. Both climb and glide are required to

produce this boundary.

FIGURE 9.5

Formation of a general grain
boundary with five degrees of
freedom. Three degrees arise from
the rotation about I of one grain
with respect to the other: vector |
has three components.

no long range stress field. The strain is localized in the region around
the dislocations.

The example illustrated in Fig. 9.4 is a boundary with one degree of
freedom since the axis of relative rotation is fixed in the same crystal-
lographic direction in both crystals and the boundary is a mirror
plane of the bicrystal. In the general case illustrated in Fig. 9.5, the
boundary is formed by cutting a single crystal on two arbitrary
planes, removing the wedge of material between the cuts, and plac-
ing the grains together with a twist. The boundary has five degrees of
freedom, three corresponding to the rotation of one grain with
respect to the other about three perpendicular axes, and two due to
the rotation of the boundary with respect to the two grains individu-
ally (see section 9.3).

The requirement that there are no long-range stress fields places
severe conditions on the dislocation geometry of low-angle bound-
aries and this is discussed in sections 9.3 and 9.4. The regular dislo-
cation arrays observed after recovery are true low-angle boundaries.

They can adopt the form typified in Fig. 9.3 because there are no
www.lran-mavad.com
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9.2 Simple Dislocation Boundaries [ ¥/5)

external constraints on the two grains. These boundaries are unlikely to form
during plastic deformation, however, because the material in regions away
from the boundary will be unable to adopt, in general, the orientation
required: long-range strain fields then result. The tangled arrangements in

Fig. 9.1 may well be of this form.

9.2 SIMPLE DISLOCATION BOUNDARIES

The simplest boundary is the symmetrical tilt boundary (Figs 2.12(b), 9.3 and
9.4). The atomic mismatch at the boundary is accommodated by regions of
good and bad fit: the latter are dislocations. In a simple cubic lattice with
edge dislocations b =[100], the boundary will consist of a sheet of equally

spaced dislocations lying parallel to the z-axis; the plane of the
sheet will be the symmetry plane x =0, i.e. (100). The extra
half-planes of the dislocations terminate at the boundary from
the left- and right-hand sides alternately. The crystals on each
side of the boundary are rotated by equal and opposite
amounts about the z-axis and differ in orientation by the
angle 6 (Fig. 2.12(b)). If the spacing of the dislocations is D,
then:

b 0
and for small values of ¢ (in radians)
b
D~ 0 (9.2)

If #=1° and b=0.25 nm the spacing between dislocations
will be 14 nm. When the spacing is less than a few lattice spa-
cings, say five, 6 ~ 10° and the individual identity of the dis-
locations is in doubt, the boundary is called a large-angle
boundary. Experimental evidence for tilt boundaries has been
presented in Fig. 2.12. Many such observations of boundaries
have been reported using decoration and thin film transmis-
sion electron microscope techniques.

A more general tilt boundary is illustrated in Fig. 9.6. By intro-
ducing a second degree of freedom the boundary plane can be
rotated about the z-axis. The boundary plane is no longer a
symmetry plane for the two crystals but forms an angle ¢ with
the mean [100] direction of the two grains. Two sets of atom
planes end at the boundary and the geometrical conditions
require the boundary to consist of two sets of uniformly
spaced edge dislocations with mutually perpendicular Burgers
vectors, b; and b,. Since EC =AC cos(%’—v vg‘/hza)ng%glvé 3 = n‘?C
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Tilt boundary with two degrees of freedom.
This is the same boundary as in Fig. 9.3
except that the plane of the boundary makes
an arbitrary angle ¢ with the mean of the
(010) planes in the two grains. The atom
planes end on the boundary in two sets of
evenly spaced edge dislocations. (After Read
(1953), Dislocations in Crystals, McGraw-
Hill.)
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FIGURE 9.7

Formation of a simple twist boundary by rotation about an axis perpendicular to the figure: open circles represent atoms just above
the boundary and solid circles those just below. (a) Atom positions resulting from rigid rotation through angle 6. (b) Accommodation of
mismatch in (a) by localized distortions, seen to be two sets of parallel screw dislocations labeled S-S. (After Read (1953) Dislocations

in Crystals, McGraw-Hill.)

cos(¢ + 6/2), the number of (100) planes intersecting EC is (AC/b;) cos
(¢ —6/2) and the number intersecting AB is (AC/b,) cos(¢ + 6/2). The num-
ber terminating at the boundary is therefore

(AC/by)[cos(¢ — 0/2) — cos(¢ + 0/2)] ~ (AC/b1)f sin ¢

if <« 1. Similarly, the number of terminating (010) planes is (AC/b,)6 cos ¢.
The spacings along the boundary of the two sets of dislocations are therefore
b
< D, = b
0 sin ¢ 0 cos ¢

D; = (9.3)

A simple boundary formed from a cross grid of pure screw dislocations is illus-
trated in Fig. 9.7. A single set of screw dislocations has a long-range stress
field and is therefore unstable but the stress field is cancelled by the second
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9.3 General Low-angle Boundaries [ ¥/

set of screw dislocations. The two sets of equally spaced parallel dislocations
lie in the boundary which also lies in the plane of the diagram. They pro-
duce a rotation about an axis normal to the boundary of one-half of the
crystal with respect to the other. Such a boundary is called a twist boundary.
The spacing between dislocations in each set is:

b
D=3

9.3 GENERAL LOW-ANGLE BOUNDARIES

It was explained in section 9.1 that the general planar boundary has five
degrees of freedom. Three correspond to the difference in orientation of the
grains, for if 1 is a unit vector parallel to the axis of relative rotation of the
grains (Fig. 9.5), the rotation may be represented by the vector w = 16, which
has three independent components. The orientation of the boundary may be
specified by a unit vector n normal to the boundary plane. This introduces
only two degrees of freedom, one for each crystal, for rotation of the bound-
ary about n is not significant. The tilt and twist boundaries can now be
defined as follows: in a pure tilt boundary, 1 and n are at right-angles and in
a pure twist boundary 1 =n. In the examples in section 9.2 the tilt boundaries
are described by arrays of edge dislocations and the twist boundaries by
screw dislocations, but these are special cases. For example, if the disloca-
tions in the crystals of Fig. 2.12(b) have Burgers vectors 3(111) rather than
(100), the pure tilt boundary on (100) would consist of a wall of disloca-
tions of mixed character, the edge components all having the same sign and
the screw components alternating in sign; e.g. the Burgers vectors may alter-
nate between }111] and 1[111]. The screw components contribute to the
energy of the tilt boundary but not to its misfit. Similarly, the pure twist
boundary will, in general, contain dislocations with (alternating) edge char-
acter. The general boundary with 1 neither perpendicular nor parallel to n
has mixed tilt and twist character.

The orientation of the crystals and the boundary formed in the way illus-
trated in Figs 9.4 and 9.5 can be defined by the parameters I, n and 6. Frank
(1950) has derived a relation which may be used to determine the arrange-
ments of dislocations which will produce such a boundary, or conversely the
orientation of a boundary produced by a given set of dislocations or disloca-
tion network. For a general boundary, Frank’s relation is

d=(rXxX12 sing

or (9.4)

d=(rx1)f
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CHAPTER 9: Dislocation Arrays and Crystal Boundaries

for small values of 6. The vector r represents an arbitrary vector lying in the
plane of the boundary which contains the dislocation network, and d is the
sum of the Burgers vectors of all the dislocations intersected by r, i.e.

d= ZNibi (95)

where N; is the number of dislocations of Burgers vectors b; cut by r.
Relation (9.4) is derived by application of the Burgers circuit construction
(section 1.4). Consider a closed circuit starting at the end point of r, passing
through one grain to the start point of r and returning back through the sec-
ond grain. In a perfect reference crystal, the circuit starts at the end point of r
and finishes at the end point of the vector r' obtained from r by the rotation
w = 16. Vector d equals the closure failure r — r’ of the circuit which, for small
6, equalsr X w=(r X 1)6.

A number of points should be noted regarding this relation. (a) It applies
only to boundaries which are essentially flat and have no long-range stress
field, i.e. the elastic distortion is restricted to the region close to the disloca-
tions. (b) The formula does not uniquely determine the dislocations present,
or their pattern, for a given orientation of crystal and boundary. Thus, a vari-
ety of possibilities may arise and the most probable will be the one of lowest
energy. (c) The density of a given set of dislocations in a boundary is directly
proportional to 6 (for small ). (d) Each set of dislocation lines will be
straight, equally spaced and parallel even for a boundary containing several
sets of dislocations with different Burgers vectors.

A general boundary requires three sets of dislocations with three non-
coplanar Burgers vectors, so that the boundaries formed from one or two
sets are restricted. Frank’s formula can be applied to analyse all cases, either
to determine the possible dislocation arrangements if n, 1 and 6 are known
or to find the orientation, etc. if the dislocation content is specified. This is
illustrated here by simple examples. (Examples of more detailed cases may
be found in Chap. 19 of Hirth and Lothe, 1982.)

If a boundary contains only one set of dislocations, each having Burgers vec-
tor b, equations (9.4) and (9.5) become

Nb = (r X 1) (9.6)
Clearly b is perpendicular to r and I, and since the direction of r in the
boundary is arbitrary, b is parallel to n and 1 is perpendicular to n. When r
is chosen parallel to 1, r X 1 =0 and no dislocations are intersected by r,

showing that the dislocations are parallel to the rotation axis 1. From these
observations, the boundary is a pure tilt boundary consisting of pure
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9.3 General Low-angle Boundaries [ V4]

edge dislocations. If r is taken perpendicular to 1 and (obviously) n, then
r= (I X n)r, where r = |r| is the length of r. Equation (9.6) then becomes

Nb = [(1 X n) X 1Jrf
ie.

Nb = nré

Since b = bn, the spacing of the dislocations is

p=" 2?
N 0

in agreement with equation (9.2). The simple tilt boundary of Figs 9.4 and
2.12(b) with 1=[001] and n=[100] is of this type, for when r lies in the
[001] direction, r X 1 is zero, demonstrating that the dislocations are all par-
allel to [001]. When r is in the [010] direction r X 1 equals r[100], showing
that if the dislocations have Burgers vectors b =[100], their spacing is b/0.

Consider next a boundary containing two sets of dislocations with Burgers
vectors b, and b,, which are not parallel. Frank’s formula is

N1b1 +N2b2 = (1' X 1)9 (97)

Taking the scalar product of both sides with b; X b, gives
(rXx1)y-(b; Xby)=0
ie.

r-[l X (b;y X by)] =0 (9.8)

Since the direction of r in the boundary is arbitrary, this condition is satis-
fied whenever [l X (b; X b,)] is parallel to n; i.e. (b; X b,) and 1 lie in the
boundary plane. This defines a pure tilt boundary. With r chosen parallel to
1, the right-hand side of equation (9.7) is zero and so both sets of disloca-
tions are parallel to 1. Their density is found by setting r perpendicular to 1,
i.e. r=(1 X n)r, and equation (9.7) becomes

Nlb] +N2b2 = nré (99)

The boundary of Fig. 9.6 has this form. From the figure, b; = [100],
b, = [010] and n = [sin ¢, —cos ¢, 0]. Substitution into equation (9.9) gives
D, =0b/6 sin ¢ and D, =b/0 cos ¢, where b is the lattice parameter, in agree-
ment with the result (9.3).

Condition (9.8) is also satisfied when 1 is parallel to b; X b,, ie. 1=
(b; X by)/Iby X b,|. Equation (9.7) then becomes
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m CHAPTER 9: Dislocation Arrays and Crystal Boundaries

Niby + Naby = [bi(r - by) = ba(r - b1)]¢/Ib1 X by
(9.10)
It may be shown that the two sets of dislocations are
not parallel. For the pure twist boundary, n equals 1
A

and the spacings simplify to b;/6 and b,/6 respec-
r1  tively. In the special case when b, is perpendicular to

rs

FIGURE 9.8
Hexagonal network of
perfect dislocations

(b = 1(110)) on a {111}
plane in a face-centered
cubic lattice.

b,, the line directions are b; and b,, respectively, so
that the dislocations are pure screw. This corresponds
h to the boundary of Fig. 9.7.

Finally, consider the following boundary in a face-cen-
tered cubic lattice. The dislocation network is an
example of that defined by equation (9.10), except
that at the point where a dislocation of one set inter-
sects one from the other, they react to form a third.
This results in an hexagonal net of lower line length (and energy), as illus-
trated in Fig. 9.8. The Burgers vectors are described using the Thompson
notation (section 5.4). They lie in the plane of the net, e.g. AB = 1[110],
BC = 1[101], CA = 1[011] in plane (111), and one results from the addi-
tion of the other two; e.g. AB + BC equals AC. It is important that the
sequence of lettering around any node is consistent. The Burgers vector of
each dislocation is represented by two letters written on either side of it. The
lettering should be such that any track around the node makes a continuous
path, for example, AB, BC, CA, or AB, CA, BC, but not BC, CA, BA, or AB,
BC, AC. Given that h is the distance between the centers of the mesh, the ori-
entation of the plane of the net and the individual dislocations in the net
can now be determined. If vector r is placed horizontally on the net in
Fig. 9.8, i.e. ry, it crosses r;/h dislocations of Burgers vector AB. Frank’s for-
mula becomes

ABri/h = (r; X )8
Similarly for vectors r, and r; shown in the figure:

BCry/h = (r; X 1)0

CArs/h = (r; X 1§

It follows that 1 is perpendicular to the net, which therefore forms a pure
twist boundary. Furthermore, since AB is perpendicular to r; and |, the dislo-
cation segments perpendicular to r; are pure screw in character. So, too, are
those perpendicular to r, and r;. All the dislocations are pure screws, and 6,
the angle of rotation of the boundary, is b/h for small 6, where b= |AB|.
Such a net of regular hexagons cannot lie in any other plane without produc-
ing long-range stress fields in the crystal. Any deviation from the (111)

boundary plane must be accompanied by a modification of the regular
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9.4 Stress Field of Dislocation Arrays m

hexagon structure if long-range stresses are to be avoided.
The dislocations can dissociate to form extended nodes (sec-
tion 7.8) whilst still satisfying Frank’s formula. Similar
stable networks can also arise in other structures. The
arrangement of dislocations in a typical boundary in a body-
centered cubic crystal is shown in Fig. 9.9.

Although low-angle boundaries are formed primarily under
conditions in which dislocations can climb freely, it is poss-
ible to produce them by slip, but the geometrical conditions
are very restrictive. The orientation and character of the dis-
locations in the boundary must have common slip Burgers
vectors and lie on slip planes, and also satisfy the Frank
equation.

9.4 STRESS FIELD OF DISLOCATION
ARRAYS

Dislocation nets may have long- or short-range stress fields. The distribution
of stress is sensitive to the arrangement, orientation and Burgers vectors of
the dislocations. Boundaries satisfying Frank’s condition (equation (9.4)) do
not produce long-range fields. A few examples of the most elementary
boundaries are sufficient to illustrate these points.

The components of the stress field of single edge and screw dislocations
have been given in equations (4.16) and (4.13), respectively. The total stress
field of an array is obtained by a summation of the components of the stress
field of the individual dislocations sited in the array. Thus, consider a wall
of edge dislocations of Burgers vector b making up a symmetrical tilt bound-
ary lying in the plane x = 0 with the dislocations parallel to the z-axis. With
one dislocation lying along the z-axis, and N others above and N below, the
stress field of the boundary is given by

yn(3x +Yn
Tax = 277(1 - 1/) Z (x2 +y2) ©-11)
Gb Y —ya
oy = 271 = u) (x2 2 )2 (9.12)
x(x? —y
T = 277(1 —v) 4 Z v (@2 +y2) ©-13)

where y, =y —nD and D is the dislocation spacing. The term with n=20 is

the contribution of the dislocation at y =0 (see equation (4.16)). The effect
www .Iran-mavad.com
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FIGURE 9.9
Transmission electron
micrograph of extensive
dislocation networks in
body-centered cubic iron.
Each network consists of
three sets of dislocations,
Burgers vectors 3{111],
J[111] and [100]. The
plane of the networks is
almost parallel to the plane
of the foil. (Courtesy
Dadian and Talbot-
Besnard.)
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Constant value contours of the stress field o, of a single edge The stress field o, of a vertical wall of two edge dislocations
dislocation. Dashed circles show distance from the origins. (From  spaced 28b apart. (From Li (1963), Electron Microscopy and
Li (1963), Electron Microscopy and Strength of Crystals, p. 773. Strength of Crystals, p. 173. Interscience.)

Interscience.)

of the summation is for the individual contributions to tend to cancel within
a distance ~ND of the origin. For example, it is readily shown from the
above equations that the stresses, o,y, 0,, and 0., = —v(ow +0y) aty=D/2
due to dislocation n = 0 are cancelled by those due to dislocation n = 1. This
mutual cancellation occurs over a large part of the region 0 <y < D, as dem-
onstrated explicitly for o, by comparing Figs 9.10 and 9.11. Addition of dis-
locations n=—1, n=2, and then n=—2, n= 3, etc,, extends the region of
cancellation. Exact summation of equations (9.11)—(9.13) is possible for
infinite arrays, i.e. N— co. The solution for oy is shown in Fig. 9.12. For,
|x| = D/2m, oy, is approximated by

2wGbx 27y —27|x]|

so that away from the boundary, o,, decreases exponentially with x. Near the
wall (|x| = D/2n), the stress is dominated by the nearest one to three
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0440.10

FIGURE 9.12

The shear stress field o, of an infinite array of edge dislocations. Unit of stress Gb/2(1 — v)D. (From
Li, Acta Metall. 8, 296, 1960.)

dislocations (Fig. 9.12). Because the stress fields are localized at the bound-
ary the strain is small and therefore the boundary represents a
stable configuration with respect to slip. However, the dislocations in the
boundary can climb, resulting in an increased separation of the dislocations
and a reduction in 6. Although the infinite wall of edge dislocations has no
long-range stress field, a finite wall (N not infinite) has, as implied by
Fig. 9.11.

If the dislocations in the vertical wall were to be moved by slip so that the
boundary made an angle ¢ with the original low-energy position, it can be
shown that the wall will have a long-range stress field and a higher energy
because the stress field of the individual dislocations no longer cancel each
other so effectively. Such a boundary is most likely to be formed during plas-
tic deformation. The long-range stresses can be removed by the boundary
combining with a second wall of dislocations with Burgers vectors normal to
the original ones as shown in the stable tilt boundary in Fig. 9.6. Similar
arguments can be used to show that an infinite wall of parallel screw disloca-
tions always has a long-range stress field, which is removed by the introduc-
tion of a second set of screw dislocations to form a cross grid as in Fig. 9.7.

As in the case of a single dislocation, work will be done when a dislocation
is introduced into the stress field of a dislocation wall. The interaction force
can be determined from equations such as (4.35) and (4.37) by using the
appropriate stress summations. The problem may be complicated by the
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m CHAPTER 9: Dislocation Arrays and Crystal Boundaries

movement of the boundary dislocations during the
interaction. Some qualitative features are worth not-
7 nteracting ing and, for simplicity, the intersection of an edge
J_ dislocation dislocation with a wall of edge dislocations of the
S Trace of slip same sign is considered, as depicted in Fig. 9.13.
plane Near the wall, the dislocation experiences short-
range forces similar to those for the infinite bound-

Attraction

FIGURE 9.13
Dislocation wall containing
four edge dislocations of
the same sign. Similar
dislocations of the same
sign in parallel glide planes
are attracted or repelled
depending on their
position.

ary (Fig. 9.12). In the attractive regions, this may
result in a small displacement of an adjacent wall
dislocation, so that the two ‘share’ one wall position.
Alternatively, if the temperature is high enough, the
wall dislocations may climb to accommodate the
extra dislocation within the wall. The regions of
attraction and repulsion are shown in Fig. 9.13. It is
seen that at distances =D from the wall, attraction
only occurs in the shaded regions delineated approx-
imately by the lines y = *x. In these regions, the stress fields of the disloca-
tions in the wall tend to reinforce each other rather than cancel: i.e. the
dislocation in the matrix in Fig. 9.13 effectively experiences at large distances
a force due to a single dislocation at the origin with Burgers vector four
times that of the individual wall dislocations.

Figure 9.13 illustrates also a probable way in which a low-angle boundary
develops during the recovery process. Dislocations in the unshaded regions
will tend to be repelled by the boundary, but can climb by vacancy diffusion
processes. If a dislocation at P climbs into the shaded region Q it will then
experience an attractive force tending to align the dislocation in the low-
energy configuration at the top of the existing wall. The path taken is indi-
cated by the dotted line.

9.5 STRAIN ENERGY OF DISLOCATION ARRAYS

The energy per unit area of a low-angle boundary is found by multiplying
the energy per unit length per dislocation by the number of dislocations per
unit area, which is D™' = /b for an array of parallel dislocations. The result,
first published by Read and Shockley (see Read, 1953), is

E = Eof(A —In 0) (9.15)

where constant E, is a function of the elastic properties of the material and
A is a constant which depends on the core energy of an individual disloca-
tion. An approximate derivation of this remarkably simple formula for the
symmetrical tilt boundary of edge dislocations is as follows.
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9.5 Strain Energy of Dislocation Arrays a

Consider the work done in creating one dislocation of the complete wall of
identical dislocations. By analogy with the derivation of equation (4.22) in
section 4.4, the contribution to the strain energy per unit length for the dis-
location at the origin y = 0, for example, is

1 o0
E (per dislocation) = 5 b J Oxy dX (9.16)

To

where o,, is given by equation (9.13) evaluated on y =0, and ry is the dislo-
cation core radius. It was shown in the preceding section that o, for small x
is approximately the stress due to a single dislocation at y=0, i.e. Gb/27
(1 —v)x, and that for large x it has the approximate exponential form of
equation (9.14). The radius of the transition between these two expressions
is proportional to D and is approximately x = D/2x. The contributions the
two parts make to the energy are readily found from equation (9.16) to be

1 D/27T
EbJ oydx ~ Eob In(D/27ry)
. (9.17)
*bJ O’xde:Eob2/€
2 D/2rm

where Ey = Gb/47(1 — v). Multiplying the sum of these two terms by /b and
replacing D by b/0 gives the Read—Shockley formula (equation (9.15)) with
A =1In(b/27ry) + 2/e. The term 2/e in A is replaced by 1 if the

more accurate form of o, is used.

This derivation emphasizes the fact that the In(f) term arises grain 3
from the elastic energy per dislocation. It decreases as 6
increases because the stress fields of the dislocations overlap

and cancel more fully as D decreases. If the non-linear dislo- E,
cation core energy is added to equation (9.15), parameter A

is modified in value but remains independent of 6. The grain 2
Read—Shockley formula shows that it is energetically favor-

able for two low-angle boundaries with misorientation

angles 6, and 6, to combine to form a single boundary with angle (6, + 6,).
Furthermore, it predicts that E has a maximum at 6 = exp(A — 1), as can be
verified by differentiation of equation (9.15).

FIGURE 9.14

Three grain boundaries
that meet along a line
(normal to the figure). Each
boundary has an energy, £,
Experimental verification of equation (9.15) was one of the early successes per unit area which is a
of dislocation theory. The relative energy of a dislocation boundary was mea-  function of its

sured using the simple principle illustrated in Fig. 9.14. This shows three misorientation angle, 6,
boundaries looking along their common axis. If E;, E, and Ej are the ener- and its crystallographic
gies of the grain boundaries per unit area, each boundary will have an orentation.
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0.5 effective surface tension equal to its energy. The situa-
o .7 tion will approximate, under equilibrium conditions,
‘ to a triangle of forces, and for the equilibrium of these
04l P forces acting at a point
N ) ‘e Ey  E,  E;
iE, ¥ sintg,  siny,  siny;
= 0.3 //
o By measuring ; %, and 5 and the misorientation
‘l; £ across the boundaries it is possible to determine the
g 02k relative energies.
> ’
& > e Experimental values Early measurements of E as a function of 6 showed
A Read-Shockley good agreement with the Read—Shockley formula,
01 gl (large angle parameters) even for angles as large as ~40°. This was somewhat
Read"—Sholckley surprising, because for large-angle boundaries
(small angle parameters) (6 = 5—10°), the dislocation cores overlap to such an
- 1 - - | extent that the derivation of equation (9.15) based on
0 4 (f degreli 16 20 linear-elastic energy considerations ceases to be valid.
Subsequent research on the energy of low-angle
FIGURE 9.15 boundaries found that equation (9.15) does indeed

Relation between boundary
energy and misorientation
angle @ for [001] tilt
boundaries in copper.
Theoretical fits of the
Read—Shockley equation
using either high-angle or
low-angle data are shown.
(After Gjostein and Rhines,
Acta Metall. 7, 319
(1959).)

give a good fit to the data for small ¢, and that the apparent fit for high
angles is fortuitous: it is only obtained by changing the constants E, and A
from the values fitted at low angles. This is demonstrated by the data for tilt
boundaries in copper in Fig. 9.15.

9.6 DISLOCATIONS AND STEPS IN INTERFACES

Admissible Defects

Line defects in interfaces between crystals can play an important role in
transformations involving the growth of one crystal at the expense of
another, e.g. twinning, martensitic transformations and precipitation. In the
simplest picture, the defect is akin to a step and its motion over the interface
is the mechanism that transforms atoms of one crystal to sites of the other.
The word ‘step’ is misleading, however, because line defects in interfaces
have specific character, which may or may not be step-like, and need to be
defined with care. A brief description of this topic is presented here and
more rigorous treatments are referenced at the end of the chapter.

The topological properties, e.g. the Burgers vector b and step height h, of
interfacial defects that can arise when two crystals are joined to form a
bicrystal are determined by the symmetry and orientation of the crystals.
Specifically, they are defined by the crystal symmetries that are broken.
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9.6 Dislocations and Steps in Interfaces [t/

L

(©)

FIGURE 9.16

llustration of the formation of a bicrystal by joining surfaces of crystals A and w. () Reference space has no interfacial defects. (b)
Interfacial dislocation with step character and (c) one without. (d) Interface step with no dislocation character. The interface structures
are identical on either side of the defect in (0)—(d).

An interfacial dislocation arises when either the translation or point group
symmetry operations are broken. Consider the two crystals labeled p and A
(black and white) in Fig. 9.16. If a bicrystal is created by bringing the upper
planar surface of u, with outward normal vector n, into contact with the
lower surface of ), as in Fig. 9.16(a), a defect-free interface can result. If a
surface contains a step and the surface structure is identical on either side of
it, the step must be related to the crystal symmetry: in the simplest case, it is
characterized by a translation vector t of the lattice, as indicated by the steps
on the surfaces drawn in Figs 9.16(b)—(d). The height of such a step is h =
n-t and can be signed positive or negative. For the situation in Fig. 9.16(b),
the surfaces have steps that are neither parallel nor of the same height
(tx #t,, hy#h,), so that when they are brought together to form a bicrystal
with no atoms removed and no spaces left along the stepped interface, the
material in the vicinity of the resulting overlap step will have to be distorted
to fit, as in the ‘cutting and rebonding’ process for crystal dislocations pre-
sented in section 3.2 Thus, a dislocation with Burgers vector

b=1t,—t, (9.18)

is created, separating identical interfaces on either side. (Note that the sign
convention used for b assumes that the positive line sense of the defect is
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FIGURE 9.17

() Atom positions in two adjacent (001) planes in two face-centered
cubic crystals separated by a symmetric {130}/(001) 37°-tilt
boundary. The unit cells are shown in outline and the atoms in
different planes are plotted as circles and triangles. () Two lattices
superimposed to show coincident sites, marked as half-filled
symbols. The unit cell of this CSL with > = 5 is indicated by the
dashed lines.

out of the paper in Fig. 9.16.) Interfacial
defects with non-zero b and step height h
have been termed disconnections. If the two
surfaces have steps of equal height but
opposite sign, as in Fig. 9.16(c), the resul-
tant interface contains a defect that is a dis-
location with no step character. Finally, if
the two crystals have symmetry in common,
ie. ty=t, then it is possible to create a
defect as a pure step without dislocation
character, as in Fig. 9.16(d).

To illustrate these features in a specific case,
consider a bicrystal formed by joining two
face-centered cubic crystals of the same
metal along a {130} plane of each after
one has been rotated with respect to the
other by an angle of 2 tan '(1/3) = 36.9°
about a common (001) axis. The [001] pro-
jection of atoms that lie in two adjacent
(001) planes is shown in Fig. 9.17(a). (The
misorientation angle of this symmetric tilt
boundary is too large for the interface struc-
ture to be described as an array of distinct
dislocations, as in sections 2.3 and 9.2).
Now imagine the two lattices to interpene-
trate and bring a lattice point of each into
coincidence by translation. This creates the
dichromatic pattern of Fig. 9.17(b). It can be
seen that for this particular misorientation
of the crystals many sites (one in five) are
in coincidence, shown by half-filled sym-
bols. When such a situation occurs a coinci-
dent-site lattice (CSL) exists. The reciprocal
of the ratio of CSL sites to lattice sites of
one of the crystals is denoted by X, which
is 5 in this case. CSLs arise most commonly
for rotations about low-index directions in
cubic crystals, but cannot be created so

readily for lower symmetry systems or when crystals of different structure are
joined, and so their general significance for models of interfaces should not
be over-emphasized. Nevertheless, the example of Fig. 9.17 serves a useful
purpose for illustrating the interfacial defects discussed above.
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9.6 Dislocations and Steps in Interfaces a

Since some of the translation vectors of each lattice are coincident — these
are the vectors of the CSL — it is possible to form a pure step, as in Fig. 9.16
(d). This is demonstrated for the (130) interface in Fig. 9.18(a), where t)
and t,, are 3[130], and $[{130],, respectively. Both h, and h,, equal 10d, where
d is the interplanar spacing of the {130} planes drawn in Fig. 9.17(a).
Although the indices of t, and t, are different when expressed in the coordi-
nate frame of their own lattice, they are identical when referred to a com-
mon frame, and so b =t, —t,, is zero. The defect is a step of height 10d.

An interfacial dislocation with no step character, as in Fig. 9.16(c), can be
formed by joining the A and p surfaces shown in Fig. 9.18(b). Here, t, is
5[211], with height hy=—d and t, is 5[211], with h,=d. The resultant
defect has zero step height since h,=—h, but b=t, —t, is not zero. It is a
vector of the dichromatic pattern and is denoted as b in Fig. 9.17(b). In the
coordinate frame of the white crystal, it is b = -5[130],. An interfacial dislo-
cation with step character, i.e. a disconnection as in Fig. 9.16(b), where the
step has a small height can be formed as depicted in Fig. 9.18(c). In this
case, ty is [100], with hy=2d and t, is %[110]u with h, = 2d. The resultant
defect is a disconnection with step height 2d and b = [310],, which is
denoted as b~ in Fig. 9.17(b). The dashed lines in Figs 9.18(b) and (c) indi-
cate the extra half-planes and distortions associated with these edge
dislocations.

It has been noted that both b and b™ are vectors from black to white sites
of the dichromatic pattern. This is a general condition for the Burgers vector
of dislocations that can exist in an interface of a bicrystal where translation
symmetry is broken and the interface structure is identical on either side of
the defect. If an interface can have more than one stable form, e.g. by rigid-
body translation of one crystal with respect to the other, then an interfacial
dislocation could separate structures that are not identical and its Burgers
vector would not be a black-to-white vector of the dichromatic pattern. As
noted above, CSLs arise only in special cases and are not a requirement for
the approach to defect characterization presented here. The twin interface in
a hexagonal-close-packed metal described in section 9.7 is an example where
the reference space is not a three-dimensional lattice.

Identification of Interfacial Dislocations

The descriptions of the preceding section provide a means of defining the
topological features of line defects that can arise in interfaces. Suppose, how-
ever, that a defect is observed in an interface by, say, high resolution electron
microscopy: how can it be characterized? As with the Burgers circuit con-
struction for a crystal dislocation (section 1.4), a circuit map can be used. A
closed circuit around a feature to be identified is first made between
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FIGURE 9.18

Some interfacial defects in a symmetric {130}/(001) 37°-tilt boundary between face-centered cubic crystals: (a) pure step, (b) edge dislocation with no step and
(c) edge dislocation with a step. Lattice vectors t, and t,, define the defect and its Burgers vector b = (t, —t,). The horizontal and vertical dashed lines in (b) and
(c) indicate the distortion associated with the dislocations.

www.lran-mavad.com

slgo guwyigo g ghgaiinh gojo

sarrepunog [eisA1) pue sAeiry uonedosid :6 Y4ILdVHD



9.6 Dislocations and Steps in Interfaces a

crystallographically-equivalent white sites and then
black sites, crossing the interface at two places. It is
then mapped on to a reference space, but unlike the

Burgers circuit for a crystal dislocation, there are two
reference crystals, black and white. The presence of a
closure failure (‘finish-to-start’) in this reference space
identifies the Burgers vector content enclosed by the
circuit in the real bicrystal.

Consider the disconnection line defect of Fig. 9.18(c).
It is reproduced in Fig. 9.19(a) and, assuming that
the defect has a positive sense out of the paper, a pos-
sible right-handed circuit starting and finishing at S is
drawn on the figure. The steps XY and ZS cross the
interface in equivalent ways and are not part of either
crystal. The reference spaces taken from Fig. 9.18 are (@)
plotted in Fig. 9.19(b) and the circuit in (a) is

mapped onto them. The presence of the closure fail-

ure confirms that the defect does indeed have disloca-

tion character with b = FS, which is the same as b™ in
Fig. 9.17(b).

Dislocations in Epitaxial Interfaces

The structure and defect content of the interface
between a substrate and material grown on it by epi-

taxy is of considerable importance, particularly in the
technology of solid-state electronic devices, and the (b)
methods of the previous two sections are useful for
describing them. Consider for simplicity two cubic
crystals A and p with their unit cells in parallel orientations, but let their lat-
tice parameters a, and a,, be different. If, for instance, 84, = 7a,, as depicted
in Fig. 9.20(a), the (001) interface is periodic because the arrangement
shown repeats periodically along the interface. The admissible interfacial
defects arising from the broken translation symmetry have b = (t, —t,,). The
shortest lattice vectors are t, =[100]y and t, =[100],, and so by, = 3[100],
with h = 0.

Now consider deforming the two crystals until they are identical with
ax=a, eg. expand the X\ crystal until the bicrystal in Fig. 9.20(b) can be
formed. This is a commensurate interface, sometimes referred to as coherent.
In dislocation terms, we can construct a closed circuit SABCDE as in
Fig. 9.20(b) and map it on to the A and x reference frames to test for a clo-
sure failure. This is shown in Fig. 9.20(c), and demonstrates that the circuit
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FIGURE 9.19

(@) Closed circuit drawn
around the interfacial
defect of Fig. 9.18(c). (b)
Circuit of (@) mapped onto
the reference space of the
two crystals, showing that
the defect has a Burgers
vector FS (= b™ in

Fig. 9.17(b)).
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FIGURE 9.20

llustration of the dislocation content of epitaxial interfaces: (a) reference A and p crystals; (b) crystal
A strained to produce a coherent interface which, with respect to (a) and as demonstrated in (c),
contains the distribution of dislocations indicated by the usual symbols with b = by,;,; (d) interface
containing a ‘misfit dislocation’, but the dislocation content is actually zero. (After Pond and Hirth,
Fig. 2.6 of ‘Defects at surfaces and interfaces’, Solid State Physics, Vol. 47, p. 287 (1994)).

in (b) does indeed enclose one or more dislocations with a total Burgers vec-
tor b = FS = [100],. The uniformity of the interface structure in Fig. 9.20(b)
implies that this dislocation content may be considered to be distributed
along the interface in the form of seven dislocations with b = 1[100], =

byin. Their presence is indicated schematically in Fig. 9.20(b).

When a strained layer grows with a coherent interface, as in Fig. 9.20(b), the
elastic strain energy increases in proportion to the volume, but can be
relieved by the introduction of crystal dislocations (with b=t, or t,) into
the interface. They are known as misfit dislocations and enable the lattice
parameter to return to the stress-free, equilibrium value. This is drawn sche-
matically in Fig. 9.20(d) and an example obtained by high resolution elec-
tron microscopy for the interface between gallium arsenide and silicon is
presented in Fig. 9.21. Note, however, that if the closed circuit SABCDE of
Fig. 9.20(d) is mapped onto the reference space of Fig. 9.20(c), no closure
failure results. In other words, the structure of Fig. 9.20(d) has zero disloca-
tion content because the long-range stress field of the misfit dislocation is
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FIGURE 9.21

(@) High-resolution electron microscope image revealing the atomic structure of the interface between gallium arsenide and silicon
which contains misfit dislocations (arrowed). (b) Tilted and transformed image showing the presence of the misfit dislocations more
clearly. (Courtesy R. Beanland and A. F. Calder,)

annulled by the uniform distribution of dislocations of opposite sign
(Fig. 9.20(b)), resulting in a total b of zero.

9.7 MOVEMENT OF BOUNDARIES

For the movement of a boundary containing interfacial dislocations, several
conditions must be satisfied. Firstly, if slip is involved the dislocation must
be free to glide on its slip plane, i.e. the plane that contains the line and its
Burgers vector. Secondly, matter must be conserved if a diffusional flux of
atoms is required for motion of interfacial defects. Thirdly, the thermody-
namic condition that movement results in either a reduction in the energy
of the boundary or, in the case of movement induced by an externally
applied stress, that the stress does work when the boundary moves. Fourthly,
the driving force due, for example, to the externally applied stress or the
excess vacancy concentration must be sufficient to produce dislocation
movement. Some aspects of the stress required to move dislocations are con-
sidered in the next chapter.

Arrays of Crystal Dislocations

Consider first the low-angle boundaries formed by dislocations whose
Burgers vectors are lattice vectors (sections 9.2 and 9.3). The condition for
slip is particularly restrictive on the movement of such boundaries and can
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FIGURE 9.22
Stress-induced movement
of a symmetrical pure filt
boundary.

be illustrated with reference to the motion of low-angle tilt bound-
aries entirely by slip: the dislocations must have parallel glide
planes. Consider the symmetrical tilt boundary illustrated in
Fig. 9.22(a). A shear stress can be applied to the boundary by add-
ing a weight to one end of the crystal as illustrated. For a shear
stress 7, acting on the slip planes in the slip direction, the force on
every dislocation will be br per unit length, and since there are 6/b
dislocation lines per unit boundary height, the force per unit area
on the boundary is

F=0r (9.19)

If this is sufficient to move the dislocations the boundary will
move to the left as illustrated in Fig. 9.22(b). Since every disloca-
tion remains in the same position relative to the others in the
boundary the geometry of the boundary is conserved. The work done by 7 is
76 per unit volume swept out by the boundary. The movement of such a
boundary was observed directly by Washburn and Parker (1952) in single
crystals of zinc. Tilt boundaries were introduced by bending and annealing
to produce polygonization as in Fig. 9.3. The boundary was moved back-
wards and forwards by reversing the direction of the applied stress.

Now consider the tilt boundary illustrated in Fig. 9.6, in which the Burgers
vectors of the component edge dislocations are at right-angles. There are
three possibilities for the movement of such a boundary under an applied
stress. (a) The dislocations move by glide and remain in the same plane par-
allel to the original boundary. Since the slip planes are orthogonal the
resolved shear stresses on the two systems are identical for a particular uniax-
ial stress, but induce the two sets of dislocations to move in opposite direc-
tions, as illustrated in Fig. 9.23. Thus, if all the dislocations were to move
together, the net work performed would be zero and there would be no ten-
dency for this to occur. (b) The dislocations move by glide but in opposite
directions (Fig. 9.23). If both sets of dislocations move in such a way that
work is done, the boundary will tend to split in the way illustrated, whereas
the forces between dislocations will tend to keep the two boundaries
together in the minimum energy configuration. Extra energy will be required
and the process will be difficult. (c¢) The boundary moves uniformly as a
whole, such that the dislocation arrangement is conserved. This can occur
only by a combination of glide and climb. The stress field indicated on
Fig. 9.23 shows that the set of dislocations (1) is under a compressive stress
and will tend to climb up and to the right by the addition of vacancies. The
set of dislocations (2) is under a tensile stress and will tend to climb down
and to the right by emission of vacancies. Thus by a combination of climb
and glide the boundary can move as a whole and the vacancies created at
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FIGURE 9.23
Stress-induced movement of a tilt boundary containing edge dislocations with mutually perpendicular
glide planes. (After Read (1953), Dislocations in Crystals, McGraw-Hill.)

one set of dislocations are absorbed by the other. Only short-range diffusion
will be required and the process can occur at a high enough temperature.

Apart from the tilt boundary discussed above, and illustrated in Fig. 9.22,
the only low-angle boundary that can move entirely by glide is a cross grid
of screw dislocations and in this case it is essential that the junctions do not
dissociate (see Fig. 7.21). In general, for stress induced boundary movement
some diffusion is required, otherwise the boundary tends to break up, such
as when a polygonized structure is deformed at low temperature.

Glide of Interfacial Defects

The discussion above is concerned with crystal dislocations. Now consider
boundaries containing more general interfacial defects (section 9.6). The
glide plane of a dislocation whose Burgers vector lies in the interface is the
plane of the interface itself. A disconnection (Fig. 9.16(b)) with hy=h,, as
in Fig. 9.18(c), meets this condition and can glide if the resolved shear stress
is high enough. Glide of the step allows one crystal to grow at the expense
of the other: for example, glide of the defect in Fig. 9.18(c) to the right
would allow black atoms to transfer to sites in the white crystal as the step
passes. The simplest, yet very important, example of this occurs in deforma-
tion twinning.
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FIGURE 9.24

(@) Projection of the atomic positions in two adjacent (110) planes in a bicrystal formed by (111){112} twinning in a body-centered
cubic metal. The twin habit plane is K;, the direction of the twinning shear is 7y and [110] is out of the paper. (b) Dichromatic
pattern associated with (a). b = (t\ —t,,) is the Burgers vector of a twinning dislocation formed by joining steps t, and t,, on the two

crystals, as indicated.

Deformation twinning on the (111){112} system is common in the body-
centered cubic metals, as noted in section 6.3. The direction and magnitude
of the twinning shear is consistent with the glide of dislocations with

= %(111} on every successive {112} atomic plane. This can be understood
in terms of the description of admissible interfacial defects given in section
9.6. The defect-free interface is plotted in [110] projection in Fig. 9.24(a).
(Visualization of the atomic positions shown is assisted by comparison with
Fig. 1.6.) The twin habit plane is K; and the twinning shear in the direction
1, reorientates the complementary twinning plane K, as indicated. The
dichromatic pattern for the bicrystal is plotted in Fig. 9.24(b), which is seen
to be a CSL with ¥ =3. The interfacial defect with a step up (from left to
right) and height d, the spacing of the {112} planes, and the shortest
Burgers vector lying parallel to the interface, is created by joining the steps
defined by ty = }[111], and t, = 3[010], as indicated. This disconnection
has b = %[ITT],\ and is a twinning dislocation, as described in section 6.3,
and, with the convention that positive line sense is out of the paper (sec-
tion 9.6), is a negative edge dislocation. For a step of opposite sign, i.e. step
down from left to right, the defect would be a positive dislocation.

Thus, the atomic displacements that give rise to the macroscopic twinning
shear occur by the glide of these defects on successive planes, as illustrated
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(b)

FIGURE 9.25

Schematic illustration of twinning in a body-centered cubic metal. The projection is the same as that
in Fig. 9.24 and the dislocations are the same as the one defined there. (a) Untwinned crystal in [110]
projection showing the stacking sequence A, B, ... of the (112) planes. (b) Twinning dislocations with
b= %[11_1] . dlide to the right on successive (112) planes under the applied shear stress indicated to
produce a twin-orientated region.

schematically in Fig. 9.25. An experimental observation of dislocations of
this type is presented in Fig. 9.26. Figure 9.26(a) illustrates the cross-section
shape of the small twin seen in the transmission electron microscope image
in (b) and an explanation for the contrast from the individual twinning dis-
locations is sketched in (c).

Twinning is an important mode of deformation for many crystalline solids,
particularly if the number of independent slip systems associated with the
glide of crystal dislocations is restricted (section 10.9). In all cases, the b and
h characteristics of the twinning dislocations can be analyzed using treat-
ments similar to those presented here. (Further details can be found in refer-
ences at the end of the chapter.) The glide motion of twinning dislocations
can occur under low resolved shear stress in many materials and is therefore
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(a)

-~ matrix

[110] —

1/6[111] dislocations

(c)
FIGURE 9.26

(b)

Experimental observation of a small deformation twin in a molybdenum—35% rhenium alloy by transmission electron microscopy. (a)
lllustration of the shape of the small twin shown in (b); the dislocations are represented by dots. (b) Diffraction contrast produced by
twin which lies at an angle of 20° to the plane of the thin foil. (c) Diagrammatic illustration of the diffraction contrast observed in (b).
The K; plane is (112) and the dislocations are in screw orientations. Each change in the fringe sequence is due to a twinning
dislocation. (From Hull (1962), Proc. 5th Int. Conf. Electron Microscopy, p. B9, Academic Press.)

relatively easy. Note, however, that if the crystal structure has more than one
atom per lattice site, then the simple shear associated with the passage of
such dislocations may restore the lattice in the twinned orientation but not
all the atoms. Shuffles of these atoms will be required. This is illustrated by
the {1012} twin in an hexagonal-close-packed metal, which has two atoms
per lattice site. The structure of the twinning dislocation found by computer
simulation (section 2.4) is shown in Fig. 9.27(a). The positive edge disloca-
tion defined by t, —t, results in a step down (from left to right) of height
2d, where d is the spacing of the {1012} lattice planes.

This structure has been verified experimentally, as demonstrated by the high
resolution transmission electron microscopy image in Fig. 9.27(b). The black
dots indicate the match between the positions of atoms near the interface in
this image and those in Fig. 9.27(a). It can be seen from Fig. 9.27(a) that the
atoms in the two atomic planes labelled S that traverse the step have to shuf-
fle as the dislocation glides along the boundary, because atoms such as 1
and 2 are closer than 2 and 3 on the left whereas 2 and 3 are closer than 1
and 2 on the right. The shuffles are short and easily achieved in this particu-
lar case, and so the core of the dislocation spreads along the interface.
Computer simulation shows that this twinning dislocation moves easily. For
boundaries where complex shuffles are necessary, the glide of twinning
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b =2/13[1011]

(b)

FIGURE 9.27

(@) Atomic structure obtained by computer simulation of the structure of a twinning dislocation in a (1072) twin boundary in titanium,
an hexagonal-close-packed metal. Unit cells are shown in outline and the position of the boundary is indicated by a dashed line. The
twinning dislocation, defined by the lattice vectors t, and t,,, has a very small Burgers vector, but requires shuffling of atoms in the
layers labelled S. (After Bacon and Serra (1994), Twinning in Advanced Materials, eds. M. H. Yoo and M. Wuttig, p. 83. The Minerals,
Metals and Materials Society (TMS).) (b) Experimental HRTEM image of a boundary in titanium containing a twinning dislocation. The
dashed lines show the location of the interface and the dots indicate the positions of some atoms near the interface. (From Braisaz,
Nouet, Serra, Komninou, Kehagias and Karakostas, Phil Mag. Letters 74, 331 (1996), with permission from Taylor and Francis Ltd
(htto://www.tandf.co.uk/journals).)

dislocations can require relatively high stress and the assistance of elevated
temperature.

Diffusion-assisted Motion of Interfacial Defects

The slip plane of the interfacial dislocations described in the preceding sec-
tion is the plane of the interface itself and so they glide under the action of a
resolved shear stress. If the dislocation has a Burgers vector with a compo-
nent perpendicular to the interface, however, it can move along the bound-
ary by climb, irrespective of the nature of the two crystals, and so requires
the diffusion of atoms to or from it. Furthermore, when either the atomic
density or the chemical composition of the two crystals is different, i.e. the
interface is an interphase boundary, a defect with step character can only move
along the interface if atomic transport can occur. These two statements indi-
cate that analysis of the atomic flux required for motion of interfacial defects
has to treat both the dislocation and step components of the defect. This is
demonstrated by the following simple example.

For the step drawn in Fig. 9.28, t, and t, are parallel but of different length,
and so hy#h, and the dislocation has a Burgers vector component b,
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FIGURE 9.28

Step and dislocation parts of the interfacial defect in the bicrystal in (@) are shown in (b) and (c). As
the defect moves to the right along the interface the volume of the A crystal increases at the expense
of the p crystal because of the step component and the volume of the p crystal decreases due to the
climb of the dislocation component.

perpendicular to the interface. Consider the step part first (Fig. 9.28(b)). If it
moves a distance x to the right, the volume change of the A crystal is

V = hwx (9.20)

per unit length of step. Let A have atoms of species A, B, C, ... with
X4, X5, X§, ... atoms per unit volume, and similarly for crystal p. The change
in the number of A atoms in the volume swept by the step is then

AN* = hyx(Xy — X5 (9.21)

For the step to move with a velocity v, AN? atoms will have to arrive or
leave in the time x/v, and so the diffusional flux (atoms per second per unit
step length) will have to be

J = hX{ = X5) (9.22)

Now consider the dislocation part of the defect (Fig. 9.28(c)). As shown by
the description of climb in section 3.6, the volume change of the p crystal is

V =bx (9.23)
www.lran-mavad.com
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per unit length of dislocation. The number of A atoms involved is
AN = buxX) (9.24)
and the diffusive flux to the dislocation is
I = buX) (9.25)

Thus, from equations (9.22) and (9.25) the net flux of A atoms to the com-
plete defect is

JY = Xy — XD + b,X))] (9.26)

and similarly for B, C, ... (Note that V, AN and J* are negative (b, < 0) in
equations (9.23—9.25) because the dislocation climb shown removes y crys-
tal. It does not create A crystal: that is done by motion of the step. Care
must be exercised in choosing an unambiguous sign convention for the step
height and b, for use in the equations above.)

For interfacial defect motion along grain boundaries, of which the twin inter-
face is a special case, the two crystals have identical chemical composition
and atomic density and so X{ = X/. Equation (9.26) shows that motion is
controlled solely by the normal component b, of the Burgers vector, irrespec-
tive of whether a step exists or not. For motion along an interphase boundary,
x4 - Xﬁ) is not zero in general because even if the chemical composition of
the two phases is the same, a difference in crystal structure usually results in
a difference in the number of atoms per unit volume. Treatments based on
equation (9.26) for some specific material systems are presented in refer-
ences at the end of the chapter.

Martensitic Transformations

These transformations are used to develop desirable properties in many
materials, such as hardenability in steels and shape-memory effects in alloys.
They occur during cooling to a phase that is more stable than the parent
phase at low temperature, but, unlike precipitation (section 10.6), the trans-
formation is not one of nucleation followed by diffusion-controlled growth.
The displacement of atoms with respect to their neighbors is small
(= interatomic spacing) and motion of the interface between parent and
product phases occurs without diffusion, i.e. the transformation is displacive.
In this respect the transformation is similar to twinning, except that the crystal
structure and atomic density of the product are different from those of the
parent. The mechanism of displacive transformations is the motion of discon-
nections (interfacial defects with both dislocation and step character — see
section 9.6). The shape change associated with the martensitic transformation
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FIGURE 9.29

High resolution micrograph of interface between martensite (o)
and austenite (y) in Fe—20.2Ni—5.4 Mn. The {110}«//{111}y
terraces and the disconnection lines are perpendicular to the
paper. (Reproduced from Moritani, Miyajima, Furuhara and
Maki, Scripta Mater. 47, 193, 2002. Copyright (2002) with

permission from Elsevier.)

is not pure shear, however, and the restrictions
on the orientation of the habit plane between the
phases and the mechanisms that allow it to
move are more severe than in twinning.

Recent studies by high-resolution transmission
electron microscopy show that the interface con-
sists of terraces, as illustrated by the example in
Fig. 9.29. A topological model has been developed
to identify the orientation of the terrace plane
and the line defects present in it, subject to the
condition that the semi-coherent interface can
move conservatively. The general form of the
interface is drawn in Fig. 9.30. It consists of two
sets of parallel line defects forming an array
bounding the terrace segments. Slip or twinning
dislocations glide in the martensite crystal; they
deform the lattice but leave it invariant.
Disconnections form the other set. When the
disconnection array moves laterally, the inter-
face advances by h. The topological model pre-
dicts the spacing, Burgers vector and step height of these defects such that
the interface is able to advance without diffusion. (See Further Reading for
more detail.)

PARENT
Disconnections b, h

Dislocationsb_____yp < X \
= Kink

Dislocation planes

PRODUCT

FIGURE 9.30

Schematic illustration of parent-martensite interface showing that the habit plane consists of terraces

and arrays of parallel disconnections and parallel dislocations. (After Pond, Ma, Chai and Hirth (2007),
Dislocations in Solids, vol. 13, p. 225 (eds. F.R.N. Nabarro and J. P. Hirth), North-Holland). Copyright
(2007) with permission from Elsevier.)
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9.8 DISLOCATION PILE-UPS T

The dislocation pile-up is a completely different
kind of dislocation array that forms during plastic
deformation. Thus, consider a dislocation source
which emits a series of dislocations all lying in the
same slip plane (Fig. 9.31). Eventually the leading
dislocation will meet a barrier such as a grain boundary or sessile dislocation
configuration and further expansion of the loop is prevented. The disloca-
tions then pile-up behind the leading dislocation, but, being of the same
sign, do not combine. They interact elastically and their spacing, which
depends on the applied shear stress and the type of dislocation, decreases
towards the front of the pile-up.

FIGURE 9.31

Linear arrays of edge
dislocations piled-up
against barriers under an
applied shear stress 7.

The stress 7, experienced by the leading dislocation of a pile-up can be
deduced as follows. Suppose there are n dislocations. The leading dislocation
experiences a forward force due to the applied stress 7 and the other (n — 1)
dislocations, and a backward force due to the internal stress 7o produced by
the obstacle. If the leading dislocation moves forward by a small distance éx,
so do the others, and the applied stress does work per unit length of disloca-
tion equal to nb7éx. The increase in the interaction energy between the lead-
ing dislocation and 7 is b76x. In equilibrium, these energies are equal and
T1 = To, SO that

T = nT (9.27)

Thus, the stress at the head of the pile-up is magnified to n times the applied
stress. The pile-up exerts a back-stress 7, on the source, which can only con-
tinue to generate dislocations provided (7 — ;) is greater than the critical
stress for source operation. Eshelby et al. (1951) calculated the spatial
distribution of dislocations in a pile-up and found that for a single-ended
pile-up spread over the region 0 = x = L, the number of dislocations in the
pile-up is

n= (9.28)

Lt
A
where A is Gb/m for screw dislocations and Gb/n(1 — v) for edges. The spac-
ing of the first two dislocations is 0.92 L/n”. The shear stress outside the pile-
up well away from the first and last dislocations is approximately the same
as that produced by a single superdislocation of Burgers vector nb at the cen-
ter of gravity of the pile-up (x =3 L/4).

Thus, unlike the Read—Shockley arrays studied in the first part of this chap-
ter, dislocation pile-ups produce large, long-range stress. At grain boundaries,
this can nucleate either yielding in the adjacent grains (section 10.9) or
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m CHAPTER 9: Dislocation Arrays and Crystal Boundaries

boundary cracks. It can also assist in the cross slip of screw dislocations held
up at obstacles such as precipitates and dislocation locks. Dislocation pile-
ups have been observed many times using transmission electron microscopy.
Most pile-ups will be made up of dislocations with an edge component to
the Burgers vector since screw dislocations can cross slip out of the slip
plane. It should also be noted that certain crack configurations can be mod-
eled in elasticity theory by pile-ups.
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CHAPTER 10

Strength of Crystalline Solids

10.1 INTRODUCTION

In Chapter 1 it was shown that the theoretical shear strength of a perfect
crystal is many orders of magnitude greater than the observed critical shear
strength of real crystals which contain dislocations. In this chapter the factors
affecting the strength of crystals are considered as an introduction to the way
that an understanding of the properties of dislocations can be used to inter-
pret the behavior of crystalline solids.

Apart from effects associated with diffusion at high temperature, plastic
deformation occurs by the glide of dislocations and hence the critical shear
stress for the onset of plastic deformation is the stress required to move dis-
locations. This is measured usually by a tensile test in which the specimen is
elongated at a constant rate and the load on the specimen is measured simul-
taneously with the extension. Representations of typical stress—strain curves
are shown in Fig. 10.1. Curves (a) and (b) are typical of many solids: (a)
represents a ductile material which undergoes extensive plastic deformation
before fracture at F, and (b) represents a brittle material which exhibits little
plasticity. The dislocations in (b) are either too low in density or too immo-
bile to allow the specimen strain to match the elongation imposed by the
testing machine. The curves show a linear region OE in which the specimen
deforms elastically, i.e. the stress is proportional to strain according to
Hooke’s Law, followed by yielding at E and subsequent strain (or work) hard-
ening up to F. In the latter process, the flow stress required to maintain plastic
flow increases with increasing strain. For most materials, the change from
elastic to plastic behavior is not abrupt and the yield stress o, is not unique.
This is because some non-linear microplasticity occurs in the pre-yield region
OE due to limited dislocation motion. Then, as shown in Fig. 10.1(a), yield-
ing is defined to occur when the plastic strain reaches a prescribed value, say
0.1 per cent: the corresponding proof stress is taken as the yield stress.
Figure 10.1(c) is typical of many body-centered cubic polycrystalline metals 205

Introduction to Dislocations. www.lran-mavad.com
© 2011 D. Hull and D. J. Bacon. Published by Elsevier Ltd. All rights reserved.
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FIGURE 10.1
Typical stress—strain curves for (a), (b), (c) polycrystals and (d) single crystals.

which do not yield uniformly. An example for iron is shown in Fig. 10.17
(b). The curve can be divided into four regions, namely: (OE) elastic and
pre-yield microplastic deformation, (EC) yield drop, (CD) yield propagation,
and (DF) uniform hardening. The deformation between E and D is not
homogeneous, for plastic flow occurs in only part of the specimen. This
Liiders band, within which dislocations have rapidly multiplied, extends with
increasing strain to occupy the entire length at D. In tests on single crystals,
it is usual to resolve the stress and strain onto the plane and direction for
which slip occurs first. The resulting stress—strain curve often has the form
shown in Fig. 10.1(d). An actual example for copper is reproduced in
Fig. 10.17(a). Above the critical resolved shear stress 7. (section 3.1), the curve
has three parts: stages I, II and III. The extent of these stages depends on
the material and crystal orientation of the load axis, as indicated by the two
curves. Polycrystalline specimens of the same metal (Fig. 10.1(a)) do not
show stage I but deform in a manner equivalent to stages II and III.

It should be noted that the form of all the curves in Fig. 10.1 is dependent
on test variables such as temperature and applied strain rate. Material
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FIGURE 10.2
Profiles of resistance force K versus distance x for barriers opposing dislocation motion.

parameters such as crystal structure, alloy composition, dislocation arrange-
ment and grain size also affect the yield and flow stresses. It is therefore pos-
sible to modify materials in order to improve their performance. The
understanding of these effects has been one of the successes of dislocation
theory and is the subject of this chapter. In section 10.2 the manner in
which the strength of barriers to dislocation motion affects the dependence
of the flow stress on temperature and strain rate is considered. The nature of
these barriers and the ways in which they are introduced are treated in the
following sections. The presentation is, in part, necessarily simplified, and
phenomena such as creep and fatigue are not touched upon at all. Reviews
and texts with comprehensive descriptions are given in Further Reading.

10.2 TEMPERATURE- AND STRAIN-RATE-
DEPENDENCE OF THE FLOW STRESS

The energy that has to be provided for dislocations to overcome the barriers
they encounter during slip determines the dependence of the flow stress on
temperature and applied strain rate. If the energy barriers are sufficiently
small for thermal energy (~kT) to be significant, thermal vibrations of the
crystal atoms may assist dislocations to overcome obstacles at lower values
of applied stress than that required at 0 K. Under such conditions, an
increase in temperature, or a reduction in applied strain rate, will reduce the
flow stress. The principles involved can be demonstrated as follows.

Consider a dislocation gliding in the x direction under an applied resolved
shear stress 7*, which produces a force 7*b per unit length on the line.
Suppose the dislocation encounters obstacles, each of which produces a
resisting force K, as shown schematically in Fig. 10.2(a). Let the spacing of
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the obstacles along the line be I, so that the applied forward force on the
line per obstacle is 7*bl. At the temperature 0 K, glide will cease if 7*bl is less
than K., and the line will stop at position x;. To overcome the barrier, the
line must move to x,. The isothermal energy change required is the area
under the K versus x curve between x;, and x,, i.e. the Helmholtz free energy
change,

AF* = J Kdx (10.1)

X1

Part of this energy can be provided in the form of mechanical work done by
the applied load, and is 7*bl(x, — x1), as shown in Fig. 10.2(a). It is custom-
ary to rewrite this mechanical contribution as 7*V*, where V* is known as
the activation volume for the process. The remainder of the energy required is
labeled ‘thermal’ in Fig. 10.2(a). It is the free energy of activation:

AG* = AF* — 7*V* (10.2)

and is the Gibbs free energy change between the two states x; and x, at the
same temperature and applied stress. The probability of energy AG* occur-
ring by thermal fluctuations at temperature T (such that AG* > kT) is given
by the Boltzmann factor exp(—AG*/kT), so that if the dislocation is effec-
tively vibrating at a frequency v (< atomic vibration frequency), it success-
fully overcomes barriers at a rate of vexp(—AG*/kT) per second. The
dislocation velocity is therefore

7 =dvexp(—AG*/kT) (10.3)

where d is the distance moved for each obstacle overcome. From equations
(3.13) and (10.3), the macroscopic plastic strain rate is

& = p,,Aexp(—AG*/kT) (10.4)

where p,, is the mobile dislocation density and A =bdv. The stress-
dependence of ¢ arises from the stress-dependence of AG*. The resulting
relation between flow stress and temperature can be derived simply for the
following case.

Suppose that the obstacles form a regular array and that each one is a region
of constant resisting force, as shown in Fig. 10.2(b). Then

™(T)
T*(O)]

AG* = AF[l - (10.5)

where AF is the total area under the K versus x curve, i.e. the energy required
to overcome the obstacle when 7* =0, and 7*(0) is the flow stress at 0 K,
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i.e. the stress required to overcome the obstacle TA
when no thermal energy is available.
Substituting equation (10.5) into (10.4) gives
for the flow stress

™(T) _ kT E
=0~ AFln<pmA> +1 (10.6)

At temperatures above a certain value, say T,
there will be sufficient thermal energy for the

barriers to be overcome by thermal activation FIGURE 10.3
alone. Then 7*(T,) = 0 and from equation (10.6) Variation of the flow stress
with temperature for
—AF
T, = ' (10.7) opstacles represented by
kIn(¢/p,,A) Fig. 10.2(0).

Substituting this into equation (10.6) gives

™ _(,_T
0) <1 TC> (10.8)

Hence, as shown in Fig. 10.3, 7* decreases from 7*(0) to zero as T increases
from 0 K to T..

Generally, the motion of a dislocation is opposed by short-range barriers,
which can be overcome by thermal activation as described here, and long-
range forces from, say, other dislocations. The latter are proportional to the
shear modulus G and produce barriers too large for thermal activation to be
significant. The flow stress then consists of two contributions. One is the
thermal component T*: the other is the athermal component 7, which is almost
independent of temperature apart from the small variation of G with temper-
ature. Thus

T=7"+171¢ (10.9)

The result of combining equations (10.8) and (10.9) is shown in Fig. 10.3.
The temperature-dependence of 7 for T < T, depends on the size of 7*(0),
which is proportional to Ky,,,, and thus on the nature of the obstacles. Most
of the barriers encountered by dislocations do not have a simple square pro-
file, as considered in Fig. 10.2(b), and do not form regular arrays. In more
general situations, equation (10.5) is replaced by

* q
AGH = AF{l - [Zgﬂp} (10.10)
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with0 = p = 1and 1 = g = 2. This generally results in a curved rather
than straight-line relationship between 7* and T. The energy AF lies between
about 0.05 Gb® and 2 Gb>. This encompasses the range from small barriers
such as solute atoms and the Peierls stress up to large barriers such as strong
precipitates.

The approach of this section illustrates the features which control the flow
stress at low to moderate temperatures. In particular, an increase in tempera-
ture or a decrease in applied strain rate provides an increase in the probabil-
ity of thermal activation and therefore results in a reduction in flow stress. It
should also be noted, however, that when AG* is very small (~ kT), the
Boltzmann distribution is no longer valid. Dislocation velocity is then deter-
mined not by thermally-activated release from obstacles, but by lattice
dynamical effects, as discussed in section 3.5.

10.3 THE PEIERLS STRESS AND LATTICE
RESISTANCE

The applied resolved shear stress required to make a dislocation glide in an
otherwise perfect crystal without the assistance of thermal activation, i.e. at
T=0K, is called the Peierls (or Peierls—Nabarro) stress. It is not to be con-
fused with the yield stress, for it is known from experiment that individual
dislocations can move and give rise to microplasticity under stresses much
smaller than the yield stress. Yielding occurs when the applied stress reaches
a value such that dislocation sources start to operate and the plastic strain
rate, which is proportional to the density and velocity of mobile dislocations
(equation 3.13), matches the strain rate imposed by the testing machine (see
section 10.5). The Peierls stress arises as a direct consequence of the periodic
structure of the crystal lattice and depends sensitively on the form of the
force—distance relation between individual atoms, i.e. on the nature of the
interatomic bonding. It is a function of the core structure and, for this rea-
son, a unique analytical expression for the Peierls stress cannot be derived.
Some important features do emerge, however, from a qualitative assessment.

Dislocation Core Structure

Consider for simplicity a simple cubic crystal. When an extra half-plane of
atoms is created by the presence of an edge dislocation of Burgers vector b,
the atoms in planes above (A) and below (B) the slip plane are displaced by
u, as illustrated in Fig. 10.4(a). To accommodate the dislocation, there is a
disregistry of atomic coordination across the slip plane. It is defined as the
displacement difference Au between two atoms on adjacent sites above and
below the slip plane i.e. Au=u(B)—u(A). The form of Au, in units of b,
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FIGURE 10.4

(a) Displacement of atoms at an edge dislocation. Open and full circles represent the atom positions
before and after the extra half-plane is created. (b) Displacement difference Au across the slip plane
for the dislocation in (a). The width of the core in the slip plane is w.

versus x is shown in Fig. 10.4(b). The width of the dislocation w is defined as
the distance over which the magnitude of the disregistry is greater than one-
half of its maximum value, i.e. over which —b/4 =< Au =<b/4. This parameter
is shown in Fig. 10.4(b). The width provides a measure of the size of the dis-
location core, i.e. the region within which the displacements and strains are
unlikely to be close to the values of elasticity theory.

Typical forms of Au curves for an edge dislocation in a simple cubic crystal
are shown schematically in Fig. 10.5: in these cases, Au has been increased
by b when negative in order to produce continuous curves. The core widths
of undissociated dislocations (Figs 10.5(a) and (b)) are usually found by
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FIGURE 10.5

Atomic positions, disregistry Aw, and Burgers vector distribution 7 for (a) wide, (b) narrow and (c)
dissociated edge dislocations in a simple cubic crystal.

computer simulation to be between b and 5b, and to depend on the inter-
atomic potential and crystal structure. Dissociation (Fig. 10.5(c)) can only
occur when a stable stacking fault exists on the glide plane. The spacing d of
the partials may be large and is determined principally by their elastic inter-
action and the stacking fault energy (equation (5.6)), whereas the width w
of the partial cores is determined by inelastic atom—atom interactions.
Another useful representation of core structure can be obtained simply from
the derivative of the displacement difference curve:

f(x) = d(Au)/dx (10.11)

The form of f(x) for the three core structures of Fig. 10.5 is shown by the
lower curve in each case. This function is known as the distribution of Burgers
vector because the area under an f(x) curve equals b. As can be seen from
Fig. 10.5, the distribution curve shows clearly where the disregistry is concen-
trated: it is particularly useful when a dislocation consists of two or more
closely-spaced partials. For non-planar cores in which the disregistry and
Burgers vector are not distributed mainly on one plane — a situation some-
times found for screw dislocations (sections 6.2 and 6.3) — a two-
dimensional plot in which the displacement difference is shown by the
length of arrows can be illuminating. This procedure is illustrated for the core
of the (111) screw dislocation in a body-centered cubic metal in Figs 6.9 and
6.10. The displacement difference and Burgers vector distribution functions
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10.3 The Peierls Stress and Lattice Resistance m

have proved to be particularly useful for presentation of details of the atomic
structure of dislocation cores obtained by computer simulation (section 2.4).

The Peierls Barrier

The core disregistry imparts upon a dislocation a core energy and resistance
to movement which are functions of the forces between atoms in the core
region. In the first estimates of the lattice resistance by Peierls in 1940 and
Nabarro in 1947, it was assumed that the atom planes A and B (Fig 10.4)
interact by a simple sinusoidal force relation analogous to equation (1.4),
and that in equilibrium the resulting disregistry forces on A and B are bal-
anced by the elastic stresses from the two half-crystals above and below these
planes. This condition provided an analytical solution for Au from which w
was found to be a/(1 — v) for an edge dislocation and a for a screw disloca-
tion, where a is the interplanar spacing and v is Poisson’s ratio: the core is
therefore ‘narrow’. The dislocation energy was also found by combining the
disregistry energy, calculated from Au and the sinusoidal forces, with the
elastic energy stored in the two half-crystals. It is similar in form to equation
(4.22), with ry replaced by approximately w/3. When the dislocation in
Fig. 10.4 moves to the right to PP, say, the atoms in planes A and B cease to
satisfy the equilibrium distribution of Au, and the disregistry energy
increases. Peierls and Nabarro calculated the dislocation energy per unit
length as a function of dislocation position, and found that it oscillates with
period b/2 and maximum fluctuation (known as the Peierls energy) given by

Gb? —27w
E,= - V)exp( D ) (10.12)

The maximum slope of the periodic energy function is the critical force per
unit length required to move the dislocation through the crystal. Dividing
this by b therefore gives the Peierls stress

_2mp 26 (2 (10.13)
e A S A '

This simple model successfully predicts that 7, is orders of magnitude smal-
ler than the theoretical shear strength (equation (1.5)).

Although the Peierls model has now been superseded by more realistic
approaches using computer simulation, it has qualitative features generally
recognized to be valid. Slip usually occurs on the most widely-spaced planes,
and a wide, planar core tends to produce low values of 7,. For this reason,
edge dislocations are generally more mobile than screws (section 3.5). Also,
the Peierls energy can be very anisotropic, and dislocations will then tend to
lie along the most closely-packed directions, for which 7, is a maximum, as
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CHAPTER 10: Strength of Crystalline Solids

in Fig. 8.8. Experimental studies of microplasticity and internal friction show
that the magnitude of the stress at which dislocations start to move depends
sensitively on the nature of the interatomic forces. It is low (<107° to 107> G)
for the face-centered cubic and basal-slip hexagonal metals, in which dislo-
cations dissociate, but is high (~1072G) for covalent crystals such as sili-
con and diamond, in which dislocations have a preference for the (110)
orientations either parallel or at 60° to their 1(110) Burgers vector. The
body-centered cubic metals, for which the (111) screw does not have the
planar form of the Peierls model (see section 6.3), and the prism-slip hex-
agonal metals (section 6.2) fall between these extremes. There is a discrep-
ancy between the experimental values and 7, which, as defined above,
refers to a straight dislocation in a crystal at 0 K. Atomic-scale computer
FIGURE 10.6 simulation of metals gives 7, values orders of magnitude higher than those
Schematic illustration of obtained by experiment. Real crystals cannot be cooled to 0 K and disloca-
the potential energy tions in them are not straight at the atomic scale. These factors assist dislo-
surface of a dislocation Ine  ¢ions 1o glide at much lower stress than 7, a feature confirmed by

due to the Peierls barrier simulation. They are considered next.
Ep. (After Seeger, Donth

and Pfaff, Disc. Faraday

Soc. 25, 19, 1957) Kink Mechanism

The energy of a dislocation as a function of posi-
T tion in the slip plane is illustrated in Fig. 10.6 for
a X maximum 3 dislocation lying predominantly parallel to the
z-direction, which is a direction corresponding to

m}

a low core energy, e.g. one densely packed with
atoms. The energy E, per unit length is given
approximately by equations (4.22) and (4.23),
but, as discussed above, superimposed on this is
the fluctuation E, (usually « E;) due to the
Peierls energy: it has a period a given by the
repeat distance of the lattice in the x-direction. If
the dislocation is unable to lie entirely in one
energy minimum, it contains kinks where it
moves from one minimum to the next, as shown
in Fig. 10.6. The shape and length m of a kink
depend on the value of E,, and result from the
balance of two factors (Fig. 10.7): (i) the disloca-
|/ | tion tends to lie as much as possible in the posi-

dislocation in potential energy tion of minimum energy (this factor alone gives
energy minimum OdeSIOcailon £t m =0 as for line A) and (ii) the dislocation tends
£y _—EEP to reduce its energy by being as short as possible

. ! ! i ! ! | (this favors the straight line B with m > a). In

%4 -2a -a 0 a 2a 3a practice, the shape falls between these extremes

kinks
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10.3 The Peierls Stress and Lattice Resistance a

FIGURE 10.7

Shape of dislocations running almost parallel to a Peierls energy minimum. The energy per unit length
of the dislocation is a minimum along the dashed lines and varies periodically at right angles to the
lines. The shape of the dislocation (curve C) is somewhere between the extremes A and B.

(line C), with high E, producing low m and vice versa. ~ Energy
The stress required to move a kink laterally along /\ --------- ~ minima
the line, and thus move the line from one energy
minimum to the next, is less than 7, which is the
stress required to move a long straight line rigidly over the energy hump E,.
Thus, at a low applied stress, pre-existing kinks can move laterally until
reaching the nodes at the ends of the dislocation segments. The resulting
plastic strain (‘preyield microplasticity’) is small and leaves long segments of
line lying along energy minima. At 0 K, a stress of at least 7, is therefore
required for further dislocation glide. As the temperature is raised, however,
there is an increasing probability that atomic vibrations resulting from ther-
mal energy may enable the core to bulge from one minimum to the next
over only part of the line (Fig. 10.8) and thus reduce the flow stress. This
process of double-kink (or kink-pair) nucleation increases the line length and
energy, however. Also, the two kinks X and Y are of opposite sign, i.e. they
have the same b but approximately opposite line direction, and therefore
tend to attract and annihilate each other. As a result, the pair of kinks is not
stable under an applied stress unless the length of the bulge, i.e. the spacing
XY, is sufficiently large, typically ~20b and >>m. Kink-pair nucleation there-
fore has an activation energy which is a function of E,,.

FIGURE 10.8
The process of kink-pair
nucleation.

The effect on the flow stress is as described in section 10.2. The flow stress
for a given applied strain rate decreases with increasing temperature up to T,
as thermal activation becomes increasingly significant. Stress and strain rate
at a given temperature are related by equation (10.4) with the Gibbs free
energy of activation AG* given by the empirical equation (10.10). The con-
stants p and g in AG* are found to be approximately 3/4 and 4/3 respec-
tively, and AF is the energy to form two well-separated kinks. It contains
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CHAPTER 10: Strength of Crystalline Solids

volume AV volume AV, defect

v

(a) (b)

FIGURE 10.9
(@) Elastic model for a defect of natural radius r,(1 + 6) inserted in a hole of radius r, The final radius
is (1 +¢). (b) Geometry for the interaction of a defect with a dislocation lying along the z-axis.

both elastic and core contributions, and it increases with E, but not in a
simple way. It is of the order of 0.1 Gb®> (~1 — 2 eV) for silicon, germanium
and for (111) screw dislocations in the body-centered cubic transition
metals, but is less than 0.05 Gb®> (<0.2eV) for the face-centered cubic
metals. The effect of lattice resistance on the flow stress in the latter case is
therefore only significant at very low temperatures.

10.4 INTERACTION BETWEEN POINT DEFECTS
AND DISLOCATIONS

Point defects, i.e. vacancies, self-interstitials, and substitutional and intersti-
tial impurities, interact with dislocations. The most important contribution
to the interaction between a point defect and a dislocation is usually that
due to the distortion the point defect produces in the surrounding crystal.
The distortion may interact with the stress field of the dislocation to raise or
lower the elastic strain energy of the crystal. This change is the interaction
energy E;. If the defect occupies a site where E; is large and negative, work |Ej|
will be required to separate the dislocation from it. This situation may be
met either when a dislocation glides through a crystal containing defects or
by annealing at sufficiently high temperatures to enable defects to diffuse to
such favored positions. Whatever the cause, an increased stress will be
required for slip and the crystal will be stronger, as discussed in sections
10.5 and 10.6. In this section, the form of E; known as the Cottrell—Bilby
formula is derived.

The simplest model of a point defect is an elastic sphere of natural radius
7.(1 + 6) and volume V;, which is inserted into a spherical hole of radius r,
and volume Vj, in an elastic matrix (Fig. 10.9(a)). The sphere and matrix are
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10.4 Interaction Between Point Defects and Dislocations

isotropic with the same shear modulus G and Poisson'’s ratio v. The differ-
ence between the defect and hole volumes is the misfit volume Vs

4 4
Vimis =V, — V), = gﬂr{f(l +8)° — §7rr22477r36(if 5« 1) (10.14)

The misfit parameter 6 is positive for oversized defects and negative for under-
sized ones. On inserting the sphere in the hole, V; changes by AV}, to leave
a final defect radius r,(1 + ¢). The change AV}, is given by

4 4
AV, = §W3(1 +e) — §7rr3 ~4nrle  (if e<1) (10.15)

Parameter ¢ is determined by the condition that in the final state the inward
and outward pressures developed on the sphere and hole surfaces are equal.
The condition is

_ 0+
AVh - 3(1 — ) mis
ie.
e= %5 (10.16)

The total volume change experienced by an infinite matrix is AV}, for the
strain in the matrix is pure shear with no dilatational part (section 8.4). In a
finite body, however, the requirement that the outer surface be stress-free
results in a total volume change given by

_3(1—vp)

AV= (1+v)

AV, (10.17)

which, from equation (10.16), equals V ;.

If the material is subjected to a pressure p= —(0x + 0y, + 02), the strain
energy is changed by the presence of the point defect by

E =pAV (10.18)

For a dislocation, p is evaluated at the site of the defect. For a screw disloca-
tion, p=0 (section 4.3) and thus E;=0. However, for an edge dislocation
lying along the z-axis (Fig. 10.9(b)), equations (4.17), (10.14) and (10.17)
give

_ 40+ V)Gbris y
31-v) (?+yp?)

| (10.19)
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CHAPTER 10: Strength of Crystalline Solids

or, in cylindrical coordinates with r = (x> + y*)"/? and 6 = tan"' (y/x),

_ 40+ v)Gbr35sin 0

10.20
! 3(1-v) T ( )
In terms of ¢ (equation (10.16)), E; simplifies to
3 sin@
E] :4GbTaET (1021)

but note that this equation would not be valid if the defect were, say, incom-
pressible, for then equation (10.16) would be replaced by ¢ = 6.

For an oversized defect (6 > 0) E; is positive for sites above the slip plane
(0 < 6 <) and negative below (7 < 6 < 27). This is because the edge dislo-
cation produces compression in the region of the extra half-plane and ten-
sion below (section 4.3). The positions of attraction and repulsion are
reversed for an undersized defect (6 <O0). The value of r, in equation
(10.20) can be estimated from the fact that Vj, is approximately equal to the
volume per atom () for substitutional defects and vacancies, and is some-
what smaller for interstitial defects. A given species of defect produces strain
in the lattice proportional to §, and this parameter can be determined by
measurement of the lattice parameter as a function of defect concentration.
It is found to range from about —0.1 to 0 for vacancies, —0.15 to +0.15
for substitutional solutes, and 0.1 to 1.0 for interstitial atoms. The sites of
minimum Ej, i.e. maximum binding energy of the defect to the dislocation,
are at 0 =7/2 or 37/2, depending on the sign of §. The strongest binding
occurs within the dislocation core at r~b, and from equation (10.20) the
energy is approximately G|6|. It ranges from about 3|6| eV for the close-
packed metals to 20|6| eV for silicon and germanium. Although the use of
equation (4.17) for p within the dislocation core is questionable, these
energy values may be considered upper limits and are within an order of
magnitude of estimates obtained from experiment and computer simulation.

The interaction of a dislocation with a spherically symmetric defect is a spe-
cial case of a more-general size-effect interaction. Many defects occupy sites
having lower symmetry than the host crystal and thereby produce asymmet-
ric distortions. Unlike the spherical defect, the asymmetric defect interacts
with both hydrostatic and shear stress fields, and therefore interacts with
edge and screw dislocations. A well-known example of such a defect is the
interstitial solute atom in a body-centered cubic metal, e.g. carbon in «a-iron.
The defect geometry is illustrated in Fig. 10.10. The most favorable site is the
octahedral site at the center of a cube face or, equivalently, at the center of a
cube edge. The interstitial has two nearest-neighbor atoms E and F a distance
a/2 away and four second-nearest neighbors A, B, C and D a distance a/,/2
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10.4 Interaction Between Point Defects and Dislocations m

away. An interstitial atom with a diameter larger than E
(a —2R), where R is the radius of an iron atom, pro-
duces a tetragonal distortion by displacing atoms E
and F more strongly than the second-nearest neigh-
bors. The misfits in the x, y, z-directions for carbon
in iron are estimated to be 1

=6y = —0.05; &= +0.43 (10.22)

The interaction energy with a dislocation is, by anal-
ogy with equation (10.18)

y

@ iron atoms

4
Er= — (0wl + 0pbyy + auézz)gwrj’ (10.23) O octahedral site

FIGURE 10.10
where oy, 0, and o,, are the stresses produced by the dislocation. For the  (.tanedral interstitial site
screw dislocation, which lies along (111), the magnitude of E; is comparable ;5 body-centered cubic
with that for the edge. In both cases E; is proportional to ™' as in equation
(10.20), but has a more complicated orientation dependence than sin 6.

A second form of elastic interaction arises if the defect is considered to have
different elastic constants from the surrounding matrix. Point defects can
increase or decrease the elastic modulus. A vacancy, for example, is a soft
region of zero modulus. Both hard and soft defects induce a change in the
stress field of a dislocation, and this produces the inhomogeneity interaction
energy. The interaction is always attractive for soft defects, because they are
attracted to regions of high elastic energy density which they tend to reduce.
(This is analogous to the attraction of dislocations to a free surface (section
4.8)). Hard defects are repelled. The dislocation strain energy over the defect
volume is proportional to 1/* for both edges and screws (see equations
(4.9), (4.15) and (4.16)), and the interaction energy therefore decreases as
1/r*. Although it is of second order in comparison with the 1/r size-effect
interaction, it can be important for substitutional atoms and vacancies when
the misfit parameter 6 is small.

There are sources of interaction between point defects and dislocations
which are not included in the elastic model. One is the electrical interaction.
In metals, the conduction electron density tends to increase in the dilated
region below the half-plane of the edge dislocation and decrease in the com-
pressed region. The resulting electric dipole could, in principle, interact with
a solute atom of different valency from the solvent atoms, but free-electron
screening is believed to reduce the interaction to negligible proportions in
comparison with the size and inhomogeneity effects. In ionic crystals, lack of
electron screening leads to a more significant interaction, but of more impor-
tance is the presence of charged jogs. The electric charge associated with jogs
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m CHAPTER 10: Strength of Crystalline Solids

(section 6.4) produces a 1/r Coulomb electrostatic interaction with vacancies
and charged impurity ions, and this probably dominates the total interaction
energy in such materials. In covalent crystals, the relative importance of the
variety of possible effects is less clearly understood. In addition to the elastic
interaction and the electric-dipole interaction with impurities of different
valency, an electrostatic-interaction can occur if conduction electrons are
captured by the dangling bonds which may exist in some dislocation cores
(section 6.6).

Finally, when a perfect dislocation dissociates into partial dislocations, the
ribbon of stacking fault formed changes the crystal structure locally. For
example, the faulted stacking sequence is hexagonal-close-packed in face-
centered cubic metals (section 5.3) and face-centered cubic in the hexagonal
metals (section 6.2). Thus, the solute solubility in the fault region may be
different from that in the surrounding matrix. The resulting change in chemi-
cal potential will cause solute atoms to diffuse to the fault. This chemical (or
Suzuki) effect is not a long-range interaction, but it may present a barrier to
the motion of dissociated dislocations.

10.5 SOLUTE ATMOSPHERES AND YIELD
PHENOMENA

Dislocation Locking

In a crystal containing point defects in solution, the energy of a defect in the
vicinity of a dislocation is changed by Ej, given by the sum of the terms dis-
cussed above. The equilibrium defect concentration ¢ at a position (x, y)
near the dislocation therefore changes from ¢,, the value a long way from
the dislocation, to

o(x,y) = co exp[—E(x,y)/kT] (10.24)

(This formula assumes the concentration c is weak, i.e. fewer than half the
core sites are occupied, and that the defects do not interact with each other.)
Defects therefore tend to congregate in core regions where E; is large and
negative, and dense atmospheres of solute atoms can form in otherwise
weak solutions with small values of ¢,. The condition for formation of these
Cottrell atmospheres is that the temperature is sufficiently high for defect
migration to occur but not so high that the entropy contribution to the free
energy causes the atmosphere to ‘evaporate’ into the solvent matrix. It is
readily shown from equation (10.24) that even in dilute solutions with, say,
¢o=0.001, dense atmospheres with ¢=0.5 may be expected at T=0.5 T,
where T,, is the melting point, in regions where —E;= 3kT,,. This corre-
sponds to a defect-dislocation binding energy of typically 0.2 to 0.5 eV for
metals, which is fairly commonplace for interstitial solutes.
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10.5 Solute Atmospheres and Yield Phenomena m

The kinetics of the migration of defects to dislo- y
cations are governed by the drift of defects under
the influence of the interaction energy E; super-
imposed on the random jumps associated with
diffusion. The path taken by a defect depends on
the precise form of the angular part of E;. For
example, a misfitting spherical defect interacts
with a straight edge dislocation according to the
form (equations (10.19), (10.20)) ;

y sin 6 \
=A = 10.25 \
@) 1029 %

E;

so that lines of constant E; are circles centered
on the y-axis as shown in Fig. 10.11. A defect
will tend to migrate into the core region by fol-
lowing a path which is everywhere perpendicular
to a constant energy contour. Such a flow line is
itself a circle which is centered on the x-axis, as
indicated by the broken lines in Fig. 10.11.
However, the rate of arrival of defects at the core depends on the exponent
of r in Ej, rather than the shape of the flow lines. Solution of the appropriate
diffusion equations shows that the rate varies with time ¢ as t*> for first-
order interactions (E;<r~') and t'/? for second-order ones (E;>r ?). The
former dependence is that obtained by Cottrell and Bilby for carbon solutes
in a-iron.

Within the core itself, the arrival of defects can have several effects. Vacancies
and self-interstitial atoms can cause climb, as discussed in Chapter 3. Small
interstitial dislocation loops formed by radiation damage in metals can
migrate to the tensile strain region below the extra half-plane of an edge dis-
location. Dislocations decorated in this way in molybdenum irradiated with
neutrons are shown in Fig. 10.12(a). In alloys, solute atoms may segregate
as shown by phosphorus in the 3DAP images of iron in Fig. 2.17, and solute
atoms in high local concentrations may interact to form precipitates along
the core, such as those forming carbides in Fig. 10.12(b) and those discussed
in the decoration technique in section 2.3. On the other hand, solutes may
remain in solution as a dense atmosphere. Both effects can annul the long-
range stress field of the dislocation and solute flow then ceases.

The importance of solute segregation in or near the core as far as mechanical
properties are concerned, is that an extra stress is required to overcome the
attractive dislocation—defect interactions and move the dislocation away
from the concentrated solute region. The dislocation is said to be locked by
the solutes. Once a sufficiently high stress has been applied to separate a
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FIGURE 10.11
Equipotential contours (full
lines) for the elastic
interaction potential given
by equation (10.25),
between solute atoms and
an edge dislocation along
the z-axis with Burgers
vector parallel to the
x-axis. Broken lines are
lines of flow for oversized
solute atoms migrating to
the dislocation.
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FIGURE 10.12

Transmission electron micrographs of dislocations decorated with (a) small interstitial loops in a
molybdenum irradiated at 320 K by fast neutrons and (b) carbide precipitate platelets (viewed edge-on)
in‘iron. ((@ From Trinkaus, Singh and Foreman, J. Nucl. Mater. 249, 91, 1997. Copyright (1997) with
permission from Elsevier. (b) From Hull and Mogford, Phil. Mag. 6, 535, 1961.)

dislocation from the defects, its movement is unaffected by locking.
However, subsequent heat treatment which allows the defects to diffuse back
to the dislocations re-establishes locking: this is the basis of strain aging.
Also, at sufficiently high deformation temperatures and low strain rates,
point defect mobility may enable solutes to repeatedly lock dislocations dur-
ing dislocation motion. This produces a repeated yielding process known as
dynamic strain aging (or Portevin—Le Chatelier effect), characterized by a
serrated stress—strain curve.

The unlocking stress is treated here for the case of a row of misfitting spheri-
cal defects lying in the position of maximum binding along the core of a
straight edge dislocation, as illustrated in Fig. 10.13. They represent, there-
fore, a small atmosphere of, say, carbon atoms (or possibly very small coher-
ent precipitates). It is assumed that the core sites are saturated, i.e. that every
defect site (of spacing b) along the core is occupied. (Note that even at satu-
ration, the number of solutes per unit volume in such atmospheres ~p/b,
where p is the dislocation density, is only a small fraction of the total num-
ber in the crystal ~c,/b>. For example, taking p = 10° mm > and b= 0.3 nm,
the ratio pb®/co is only 10™7/cy.) If the position of the solutes is ry (=b)
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slip plane
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FIGURE 10.13

Diagrammatic representation of a row of solute atoms lying in the position of maximum binding at an
edge dislocation. An applied shear stress will cause the dislocation to separate from the solute atoms
by gliding in the slip plane to position x.

below the slip plane, as shown, the interaction energy of the dislocation
with one defect when it has been displaced to position x in the slip plane is,
from equation (10.25)

A(=10)
Ei(x) = ——- 10.26
0= G (10.26)
The force in the x-direction on the line in this position is
—dE(x) —2Arox
Kx) = = 10.27
) dx (2 +13)° ( )

The force due to the 1/b defects per unit length is K(x)/b. Thus the resolved
shear stress necessary to displace the line to position x is

1 _ 2Argx

= -——=KXx)= ———= 10.28

T b2 ) b2(x2 +13)° ( )
It has a maximum 7, at x =ry/+/3 given by
334

=22 10.29

o 8b213 ( )

The form of 7 is shown in Fig. 10.14. From equation (10.20), A ~ GbQ2|6|,
so that taking ro = b, 79 ~ 0.2G|d|. This is undoubtedly an upper limit, since
it is based on the application of elasticity within the dislocation core.

www.lran-mavad.com

dlgo Guwrigo g (hgauisils gajo



m CHAPTER 10: Strength of Crystalline Solids

a

Nevertheless, it demonstrates that a considerable increase in the
yield strength may be expected from concentrated solute
atmospheres.

The estimate for 7 is the yield stress at 0 K. At non-zero tempera-
tures, thermal activation (section 10.2) may assist unlocking and

displacement x

reduce the applied stress required. The mechanism is illustrated
in Fig. 10.14, where a straight dislocation AC under an applied
stress 7 (<7() is held in stable equilibrium at position x; until
thermal fluctuations assist part of the line B to overcome the
resisting force. The process is analogous to double-kink-pair

FIGURE 10.14

nucleation over the Peierls barrier (section 10.3), except that
(x2 —x;) depends on the atmosphere dimensions and is not sim-
ply the lattice spacing. The analysis of Cottrell and Bilby gives an

Separation of a dislocation from a row of ~ activation energy in the form of equation (10.10) with p =1 and

condensed solute atoms. Initially the q = 1.5. The applied stress for unlocking therefore decreases rap-
dislocation lies along the line x = 0. idly from 7, with increasing temperature. However, as can be
Under the applied stress 7 it moves deduced from the preceding analysis, the predicted values of bar-
forward to the position of stable rier energy AF for dense atmospheres and core precipitates are
equilibrium ;. To break away it must frequently too large for thermally-activated unpinning to be

reach the position of unstable

equilibrium x,. ABC represents a loop of
dislocation, formed by a thermal stress
fluctuation, in the process of breaking
away. (From Cottrell (1957), Properties
of Materials at High Rates of Strain,

Instn. Mech. Eng., London.)

responsible for the temperature dependence of the yield stress. In
materials in which strong atmospheres form it is probable that
only a small fraction of locked dislocations become free, as a
result, perhaps, of local stress concentrations. The temperature-
dependence of the yield stress is then dominated by other effects,
such as the Peierls stress and solution strengthening.
Nevertheless, locking may still have a significant influence on the
actual yield behavior, as discussed below.

Yield Drop

The presence of strong locking effects can lead in some alloys to a pro-
nounced drop in the stress required for plastic deformation immediately
after yielding. The stress—strain curve that results is shown in Fig. 10.1(c). If
the deformed specimen is unloaded and reloaded immediately, a yield drop
does not accompany the onset of plastic flow a second time. However, if the
sample is given a suitable anneal prior to reloading, strain aging causes the
yield drop to return. The principles involved in the yield drop phenomenon
are as follows.

Consider a tensile test, shown schematically in Fig. 10.15. The elasticity of
the machine (including the load cell) and specimen is represented by an
imaginary spring. The crosshead moves at a constant speed s = dl/dt so that
the crosshead displacement at time t is st. The total elastic displacement of
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10.5 Solute Atmospheres and Yield Phenomena a

the spring is KF where F is the applied force and K the
spring constant. The plastic elongation of the specimen
is e,lo where ¢, is the plastic strain and [y is the original
gauge length. Thus

st =KF + gyly (10.30)

The plastic strain of the specimen is therefore

st — KF
Ep:

SpeCi e
10.31
10 ( )

and the plastic strain rate is

. ds,  s—K&E
6 = — =
Pde I

(10.32)

Taking the resolved shear stress 7 as F/2A,, where A, is the original cross-
sectional area of the specimen, equation (10.32) also gives

dr _ S_épl()

_ 10.
dt 2A0K (1033)
Since s = di/dt, the measured hardening rate
dr 1 épl()
— =—|1-— 10.34
dl  2A0K ( s ) ( )

can be seen to be dependent on the elastic properties of the machine and
specimen and the instantaneous plastic strain rate of the specimen.

The shape of the stress—strain curve given by equation (10.34) can be
related to the dislocation behavior through the plastic strain rate term &,
using equation (3.13). However, since both p,, and v will vary with stress
and strain, it is necessary to know the variation of both before any predic-
tions can be made. This information is only available in isolated cases.
Johnston (1962) reviewed the effects of all the machine and specimen dislo-
cation variables on the stress—strain curve and some of his results are illus-
trated in Fig. 10.16. The calculations were based on data obtained from LiF
crystals in which the measured dislocation density increases approximately
linearly with strain in the early stages and the dislocation velocity can be
related to the applied shear stress through a relation of the type (3.3),
namely

voo ™" (10.35)
where m was taken as 16.5 for LiF.
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Elastic displacement KF

Elastic displacement ¢p/y

Crosshead displacement
st=KF + SP/O

FIGURE 10.15
Schematic diagram of a
tensile machine. The spring
represents the elastic
properties of the machine
and specimen. (After
Johnston and Gilman,

J. Appl. Phys. 30, 129,
1959.)
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FIGURE 10.16

(a) Effect of initial density of mobile dislocations on the yield point. (b) Effect on the yield point of changing the stress dependence of
dislocation velocity for an initial mobile dislocation density of 10% cm™2. (After Johnston, J. Appl. Phys. 33, 2716, 1962.)

Figure 10.16(a) shows the effect of changing the initial density of mobile dis-
locations from 10° to 5% 10" m™?(=5 X 10° cm ™~ ?). The line OA represents
the situation where there is no dislocation movement and ¢ = 0 in equation
(10.34), i.e. completely elastic behavior, d7/dl = (2A,K)™". The curves show
that a sharp yield drop is obtained for low initial values of p,, and that the
yield drop decreases as p,, increases. The curves D, E, F in Fig. 10.16(a) have
been displaced from the origin for convenience. Figure 10.16(b) shows the
calculated stress—strain curves for different values of the parameter m in rela-
tion (10.35). The yielding shows a strong dependence on m. These effects
are best understood by noting from equation (3.13) that at a constant plastic
strain rate

PmuVu = PVl (10.36)

where subscripts u and [ refer to values at upper and lower yield points
respectively (see Fig. 10.1(c)). From relations (10.35) and (10.36), the ratio
of the upper to lower yield stresses is

r 1/m
Tu _ [M} (10.37)
Tl

Pmu
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10.5 Solute Atmospheres and Yield Phenomena

The ratio is therefore largest for small m and/or large (p,.1/pm.). The value of
m varies considerably from one material to another (section 3.5). In «-iron,
for example, where it is large (m ~ 40), equation (10.37) shows that p,, has
to increase by 10* times at yield for the stress to drop by 20 per cent. That is,
if py =107 cm™?, p,, = 10° cm ™2, Since the total dislocation density initially
might be typically 10° to 10’ cm™?, locking plays an important role in ensur-
ing that the initial mobile density p,,, is small.

The physical interpretation of this analysis is as follows. When a crystal con-
taining a low density of dislocations which are free to glide is strained using
a constant crosshead speed s, the dislocations cannot move fast enough at
low stresses to produce sufficient strain in the specimen. The stress in the
specimen (and spring K) therefore rises, and as it does so the dislocations
multiply rapidly and move faster, as implied by relation (10.35). The stress
stops rising (point E on Fig. 10.1(c)) when dr/dl = 0, which from equation
(10.34) occurs when ¢, =bp,,v =s/ly, i.e. the strain rate of the specimen
equals the applied strain rate. However, multiplication continues with
increasing strain, producing more than enough dislocations and bp,, 7 >s/l.
The stress therefore drops until 7 is slow enough for the two strain rates to
match. In general, three factors favor this phenomenon. First, the initial den-
sity of mobile dislocations p,,, must be small; second, the dislocation veloc-
ity must not increase too rapidly with increasing stress, i.e. small m; and
third, the dislocations must multiply rapidly. The first is the most important.

Irradiation Hardening and Dislocation Channeling

A phenomenon that illustrates several features discussed in this section is
found to occur in metals irradiated with energetic atomic particles, e.g. fast
neutrons in a fission reactor. The incident particles cause radiation damage by
displacing many atoms from their lattice sites by collisions, thereby creating
supersaturations of vacancies and self-interstitial atoms. Many collect
together, forming interstitial and vacancy dislocation loops or vacancy stack-
ing-fault tetrahedra (sections 3.7, 5.5, 5.7, 6.2 and 6.3), and others diffuse to
dislocations, causing climb, or to other defect sinks such as grain bound-
aries. The loops and small clusters that remain in the lattice act as obstacles
to dislocation motion in a similar way to that described for alloys in the
next section, and raise the stress required for yield and subsequent plastic
flow, as seen in Fig. 10.17(a) and (b) for proton-irradiated single crystals of
copper and neutron-irradiated polycrystalline iron, respectively. This is
irradiation hardening.

As noted in section 6.3, small loops consisting of clusters of self-interstitials
may be quite mobile if they have perfect Burgers vectors and so they will be
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FIGURE 10.17

Stress—strain curves for (a) copper single crystals ((110) orientation) irradiated by 590 MeV protons and (b) polycrystalline iron
irradiated by fast neutrons to different doses at room temperature. The damage dose is given as the average number of times each
atom is displaced by the radiation (displacements per atom (dpa)). (Reprinted from Victoria, Baluc, Bailat, Dai, Luppo, Schaublin and
Singh, J. Nucl Mater. 276, 114, 2000, with permission from Elsevier Science.)

able to migrate to attractive regions where their energy is lowered just below
the core of edge dislocations. They can form atmospheres, as shown in
molybdenum in Fig. 10.12(a), and so lock the dislocations and cause a yield
drop in metals where it is not usually observed, e.g. copper at high irradia-
tion dose as in Fig. 10.17(a). In materials where the density of defects is
high, dislocation motion after yielding may create regions almost free of
obstacles, as seen in the example of Fig. 10.18. The mechanisms involved in
this dislocation channeling are not understood, but may be associated with the
ability of gliding dislocations to absorb by climb the self-interstitial atoms
and vacancies in the clusters they encounter during glide, so that channeling
can occur by repeated glide and climb.

10.6 THE FLOW STRESS FOR RANDOM
ARRAYS OF OBSTACLES

The ability to confer increased strength on a crystal of one element by the
deliberate addition of atoms of other elements is one of the important
achievements of materials technology. It is possible to raise the yield strength
of metals such as aluminum, copper and nickel, for example, up to 100 or
more times the value for the pure elements by suitable choice of alloying
additions and heat treatment. Clearly, alloying introduces barriers to the

www.lran-mavad.com

dlgo Gunrigo g ghgauisils gajo



10.6 The Flow Stress for Random Arrays of Obstacles a

motion of dislocations, but the mechanism by
which dislocations are hindered depends on the
form the solute atoms adopt within the solvent
lattice. These microstructural features are assessed
in section 10.7. In the present section, general
expressions for the flow stress at 0 K are derived,
and it is sufficient to know that the obstacles
exert forces on a dislocation as it moves on its
slip plane. The theory of obstacle strengthening
can be complicated but the important features
can be distinguished with the simple approach
adopted here.

An obstacle may be classed as strong or weak
depending on whether or not a dislocation bends
through a large angle in its vicinity. Also, an
obstacle may be localized or diffuse depending on
whether or not the force it exerts on the line is
confined to a small part of the line or is distrib-
uted approximately uniformly over a long length.
The latter situation is considered first.

FIGURE 10.18

Transmission electron micrograph of dislocation channeling in
a palladium single crystal irradiated by 590 MeV protons to a
damage dose of 0.12 dpa. The sample contains a high
density of point defect clusters at this dose and when yielding
occurs channels parallel to {111} slip planes are created that
are almost free of defects. (Reprinted from Victoria, Baluc,
Diffuse Forces Bailat, Dai, Luppo, Schaublin and Singh, J. Nucl. Mater. 276,

Each obstacle is assumed to create an internal 114, 2000, with permission from Elsevier Science.)

shear stress 7; in the matrix proportional to the
misfit parameter 6 (sections 8.4 and 10.4). This produces a force on a dis-
location of maximum value 7;b per unit length. It is further assumed that ;
is constant over a region of size A, the spacing of the obstacles. An obstacle
can therefore bend a dislocation against the opposition of its line tension to
a radius of curvature R given by (equation (4.30))

R=aGb/7i ~ Gb/2T; (10.38)
Strong forces result in R < A and weak ones in R » A. Strong forces there-
fore bend the line sufficiently for it to follow the contours of minimum

interaction energy with each obstacle, as shown in Fig. 10.19(a), and the
flow stress is that required to overcome the mean internal stress:

2
7 aiff(strong) = —Ti (10.39)

Line tension prevents the dislocation bending round individual weak obsta-
cles, and the dislocation samples regions of both high and low interaction
energy, trying to avoid the former (Fig. 10.19(b)). During plastic flow, the
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o %__ o o o /o line advances by segments of length L (> A)
Dislocation ﬂ o\ © > ° S moving independently of each other from one
motion 5 ° ° o position of low energy to another. Over the
A .
(a) length L, there are n ~ L/A obstacles, and in a
random array, there will be an excess /n act-
o ©° %°%00200 0, ing in one direction on the line. The flow
Dislocation 6 o =2 0" ° 45 ° stress is therefore that required for the seg-
o [9) OIO q g
: o o .
motion : °L A ment L to overcome the mean internal stress
(b) = : of /n obstacles, each of which acts over
length A, i.e.
FIGURE 10.19 2
Dislocation on a slip plane ThL = ﬁ}TibA
in which obstacles of mean
. . therefore
spacing A exert diffuse
forces. It advances from 27 (A 1/2 10.40
the full to the dashed line =\1 (10.40)

shape as indicated. The
obstacle forces are strong |t has been recognized from the time of the earliest theories that it is difficult
in (&) and weak in (b). to estimate L. Here, it is assumed that the segment L has radius of curvature
(After Nabarro (1975).) R (»L) equal to Gb/27, and that its midpoint moves a distance A at each
advance forward. Then, from the geometry of a circle:
A_ 2 e L
5 =R-IR (L/2)"/? ~ 3R (10.41)

Replacing R by Gb/27 to find L and substituting in equation (10.40), the
flow stress to move a dislocation through an array of weak, diffuse forces is
found to be

7'1'/1

5 1/3
rai(weal) = — =7, [E] (10.42)

Other assumptions change both the numerical constant and the exponent in
this expression.

Localized Forces

In this situation, the dislocation experiences no internal stress in regions
between the obstacles, and the resistance offered by each obstacle is repre-
sented by a force K acting at a point on the line. Under an applied shear
stress 7, the line bows between neighboring obstacles to a radius of curvature
R ~ Gb/27, as shown in Fig. 10.20(a). From equilibrium between the line
tension forces T at an obstacle and K:

K =2T cos ¢ ~ Gb*cos ¢ (10.43)
www.lran-mavad.com
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FIGURE 10.20

(a) Dislocation on a slip plane in which each obstacle exerts a localized glide resistance force K,
balanced in equilibrium by line tension forces T. (b) The area used to calculate the effective obstacle
spacing / for weak forces.

If the obstacle spacing is I (Fig. 10.20(a)), each obstacle resists the forward
force 7bl on a segment of line of initial length I. The dislocation breaks away
from an obstacle when 7bl equals the maximum resisting force K,... The
flow stress for a regular square array of localized obstacles is therefore

Kmax 2T

Gb
Tloc = e ﬁcos O ~ Tcos o, (10.44)

where the obstacle strength is characterized by the critical angle
¢ =08~ " (Kmax/2T) at which breakaway occurs.

In random arrays of weak obstacles, for which ¢, ~ 7/2, a dislocation advances
by breaking from a few widely-spaced obstacles before unpinning along the
entire length. It retains a roughly straight shape. The effective obstacle spacing !
along an almost straight line is given by the Friedel relation, as follows.
In steady state at the flow stress, when a dislocation unpins from one obstacle
it moves forward to encounter one other. The area swept in so doing is there-
fore the area of glide plane per obstacle A%, where A is the average spacing of
obstacles in the plane. From Fig. 10.20(b), this area is simply the area of one
large segment of a circle of radius R minus that of two others, and is
2 20 P N 13_7

A ™ TR (if I«R) ~ Cb (10.45)
From equation (10.44) the effective obstacle spacing I is therefore
A/(cos ¢.)"/?, so that using the same equation, the flow stress for weak local-
ized obstacles is

Tloc(weak) ~ %b (cos ¢.)*? (10.46)
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FIGURE 10.21
Section of the
aluminum—copper
equilibrium diagram.

Dislocations in random arrays of strong obstacles (¢. ~ 0) move in regions
where the obstacles are relatively widely spaced (and the glide resistance
correspondingly small). This increases the effective obstacle spacing and the
flow stress is

Tloc(Strong) ~ 0.84 %b (cos ngC)S/2 (10.47)

10.7 THE STRENGTH OF ALLOYS

To apply the analyses of the previous section to real alloys, it is necessary to
consider the relative values of the flow stress given by equations (10.39),
(10.42), (10.46) and (10.47). First, however, a simplified account of the
effects of alloying in obstacle structure is presented.

Solutions, Precipitates and Aging

There is usually a maximum concentration to which the atoms of element B
can be dissolved in solution in a crystal of element A. For concentrations
below this solubility limit, any strengthening effect is due to the resistance to
dislocation motion created by the atoms of B dispersed randomly in the A
lattice. Important examples include alpha-brass (Cu alloyed with Zn), the
titanium alloy Ti—6A1—4V and the 5000 series aluminum alloys (Al—Mg).

For concentrations of solute above the solubility limit, the excess B atoms
tend to precipitate within particles of either element B or a compound of A
and B. The solubility limit varies with temperature, however. It is therefore
possible to have an alloy composition which is less than the limit at one

temperature but exceeds it at another. An example afforded

by the aluminum—copper system is shown by the equilib-

700 - rium phase diagram in Fig. 10.21. The a-phase is a solid solu-
Liquid tion of copper atoms dissolved substitutionally in aluminum.

At 550°C, the solubility limit is almost 6 wt per cent, but at

o 600F . room temperature it is less than 0.1 wt per cent. Thus, the
© o+ liquid alloy ‘Duralumin’, which contains 4 wt per cent copper, is a
*g homogeneous solid solution at the solution treatment tempera-
‘é’_ 500 Homogeneous ture of 550°C. But on slowly cooling the alloy, the second
ks phase starts to precipitate out at the temperature indicated by

400

o+ CuAl, (6) precipitate

point x, and at 20°C the alloy consists of large CuAl, precipi-
tates (f-phase) in equilibrium with the aluminum-rich
matrix. However, if the solution-treated alloy is quenched to
room temperature, insufficient time is allowed for precipita-

300
0

10 20 30

% Copper

tion and a super-saturated solid solution is obtained. On sub-
sequent annealing at 150°C, say, there is just sufficient
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10.7 The Strength of Alloys a

thermal energy available for precipitate nucleation to occur. Initially, — 000000 00—
a fine dispersion of numerous small precipitates is formed, but —0—0—0—0—0—0—0—"0—
with increasing aging time at the elevated temperature, the disper- —0—0—g 06 o0-o0—O0—0—
sion coarsens. The number of precipitates decreases and their size —0—0—0—"0"0"0—0o_—0—
and spacing increases, and eventually, after very long times, the o —0—0—0—O0—0—0—
equilibrium structure is established. o o o o o oo

In many alloys, such as Al-Cu, metastable phases occur during the oAl eCu

transition of the precipitates to equilibrium. The structure of the FIGURE 10.22
interface between these zones and the matrix governs the kinetics of their  Schematic representation
formation and growth. The first zones to form are small and coherent, in the of a {100} section
sense defined in section 9.6. In Al-Cu, for example, the copper atoms nucle-  through a GP zong in
ate platelets (known as GP zones) of about 10 nm diameter on the {100}  aluminum—copper
aluminum planes, as shown schematically in Fig. 10.22. Since the copper illustrating the coherency
atoms are smaller than the aluminum atoms, the surrounding matrix is Strains. The zones in real
strained, as indicated. (In some other alloys, the zones are oversized.) As the alloys are larger than that
zones grow by bulk diffusion, they thicken (#”-phase) and the large elastic ~Shown here.

energy associated with the coherency strains is reduced by the transition to

semicoherent zones (#'-phase) with misfit dislocations (section 9.6) in the

interface. These precipitates have crystal structures which may be coherent

with the matrix on some faces but not all. Eventually, after further growth,

coherency is lost completely and precipitates of the equilibrium phase —

CuAl, (#-phase) in an Al—Cu alloy — are produced. Aging therefore results

in a transition from (a) a solid solution of misfitting atoms to (b) a fine dis-

persion of coherent precipitates surrounded by elastic strain to (c) a coarse

dispersion of particles with incoherent interfaces and negligible lattice strain.

These structures offer differing resistance to dislocation motion, and so the

yield strength of the alloy changes with time, as illustrated in Fig. 10.23. The

solid solution is stronger than the pure metal, but by aging it is possible to

further increase the strength. A peak strength is encountered corresponding

to a critical dispersion of coherent or semicoherent precipitates, and beyond

this the strength falls as overaging occurs. Selection of the optimum heat-

treatment conditions is therefore crucial to maximizing the strength of

alloys. Important examples include the aluminum alloy series 2000

(Al—Cu), 6000 (Al-Mg—Si) and 7000 (Al—Zn).

The behavior of a dislocation under applied stress is different in the three
situations (a)—(c) described above, and the flow stress for the three cases is
treated separately below using the analysis of section 10.6.

Solution Strengthening
In the diffuse-force model of a solid solution, there are c¢/b> obstacles per
unit volume, where b is the interatomic spacing and ¢ the atomic-fraction
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Critical dispersion concentration of solute, so that the mean

Homogeneous
solid solution

Yield stress

of coherent or semicoherent spacing of neighboring solute atoms is
precipitates

A=b/c'/? (10.48)

Incoherent

L The maximum internal stress averaged over the
precipitates

space of radius A/2 around each solute is

7i ~ Gl|élc In(1/c) (10.49)

In the local-force model, on the other hand,
only those solute atoms in the two planes
immediately adjacent to the slip plane contrib-
ute. There are 2¢/b® of them per unit area of

Aging time ——» plane, so that in this case
(particle size) ——»

FIGURE 10.23
Variation of yield stress
with aging time typical of
an age-hardening
aluminum alloy.

A=b/(2c)"? (10.50)

The maximum resisting force exerted by each of these solute atoms is found
from equation (10.27) (and the subsequent discussion) to be

1
Knax ~ 3Gb2|5| (10.51)

The quantities 7; and Ky, are seldom large enough for strong-force condi-
tions to apply. Equations (10.42) and (10.46) based on weak forces are
therefore appropriate, and the latter gives much the largest flow stress when
the parameters of equations (10.48) to (10.51) are substituted. The flow
stress for a solid solution is thus

Tloc(weak) ~ +/2Gc'/?(cos ¢,)>/? (10.52)

where cos ¢~ Kp,./Gb” is given by equation (10.51). The stress increases as
the square root of the concentration. For the largest misfit expected for sub-
stitutional solutes, i.e. |§|~0.15 giving cos ¢,~0.03, the flow stress will be
raised to about G/400 when ¢ = 10 per cent, in reasonable agreement with
experiment. Since the solute atom represents an energy barrier of magnitude
~bKpax to dislocation motion, it may be anticipated from the analysis of
section 10.2 that the flow stress will decrease with increasing temperature
above 0 K. This is found to be so experimentally, the thermal component of
the flow stress being given by equation (10.10) with AF~bK., p~2/3 and
q=~3/2.

The analysis leading to equation (10.52) neglects several features known to
exist in real alloys. First, real obstacles have a finite range of interaction with
a dislocation and characteristic force—distance profiles. These details have
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10.7 The Strength of Alloys a

been incorporated in several theories and some suggest a ¢, rather than
¢'/?, dependence of the flow stress, and for many alloys a more complicated
dependence probably exists. Second, more than one type of obstacle is fre-
quently present. If 7 is the flow stress for one species and 7, that for a sec-
ond, the flow stress when both are present has been found by computer
simulation to be well fitted by

r=(r1 +713)"/? (10.53)

Precipitate Strengthening

When precipitates nucleate and grow, they intersect slip planes in a random
fashion. A gliding dislocation must either cut through the precipitates or
penetrate the array by bowing between the obstacles. It will adopt the mech-
anism offering the lowest resistance. The stress corresponding to this short-
range mechanism must be compared with that required to overcome the
internal stress 7; which coherent precipitates produce in the surrounding
lattice. The flow stress for the alloy is then the larger of the two.

Consider first the flow stress for diffuse forces governed by 7, With the
assumption that the precipitates are spherical, 7; is given by equation
(10.49), where ¢ now represents the volume fraction of precipitate. If each
precipitate contains N atoms, equation (10.48) for the mean obstacle spac-
ing is modified to

A =b(N/c)'/? (10.54)

In the early stages of aging, when A and N are small, the weak-force condi-
tions of section (10.6) apply and from equation (10.42) the flow stress is

Taitr(weak) ~ 0.4N°G|8|*/3 ¢ /°[In(1 /c)]*/3 (10.55)

In the intermediate stages of aging, A and N increase until the dislocation
can bend around individual precipitates, i.e. R~A (Fig. 10.19(a)). Then,
from equations (10.39) and (10.49), the flow stress is

T4iff(strong) ~ %Gl(ﬂcln(l/c) (10.56)

When overaging occurs, precipitate coherency is lost, and 7; falls to zero and
makes no contribution to the flow stress.

The localized forces offer two distinct resistances, as discussed above. A dis-
location cutting through a precipitate experiences a resistance force Kpayx
(Fig. 10.20(a)), and in the early stages of aging equation (10.46) is appropri-
ate. The Friedel spacing A for precipitates is found by noting that the area
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Line fraction of precipitate on a plane equals the volume
fraction c. Since the average area of obstacle on a
plane intersecting precipitates of volume Nb’
randomly is (7/6)"/® (Nb*)?*/3, then

c= (7T/6)1/3(Nb3)2/3/A2

ie.
Line

" @

FIGURE 10.24

The Orowan mechanism,
(@) The line bows between
the obstacles until the
segments at Pand P’ are
parallel (¢, = 0). They then
attract and meet. (b) The
line moves forward leaving
Orowan loops around the
obstacles.

A~ bN'3 /12 (10.57)

Loop
©/ Various factors can determine K;,.x. For example, (a)

the precipitate may be ordered and the dislocation
has to create an antiphase boundary (section 6.5), (b) the Peierls stress may
be high in the precipitate, and (c) the step of height b the cutting dislocation
creates around the obstacle periphery may have a high energy. The first two
give K. proportional to the obstacle diameter bN'/? and typical values are
of the order of Gb>N'/3/100. Thus, the critical cusp angle ¢. is approximately
cos” '(N'3/100), and weak-force conditions apply only when N < 10°. The
flow stress from equations (10.46) and (10.57) is then

1
Tloc(Weak) ~ WNI/GGCI/2 (10.58)

As aging proceeds, N and K. increase further and dislocations find it easier
to bow between the obstacles than to pass through them, as shown schemat-
ically in Fig. 10.24. Under these strong-force conditions when K., ~ Gb*
and cos ¢.~1, the flow stress is obtained from equations (10.47) and
(10.57). It is known as the Orowan stress and is

7(Orowan)~0.84 Gb/A = 0.84N"/3G!/? (10.59)

In the overaged state, dislocations cannot penetrate the incoherent interface
and equation (10.59) still applies.

It is now possible to explain the variation of the flow stress throughout the
aging process (Fig. 10.23). In the underaged condition, dislocations cut
through the precipitates, the flow stress increasing with N when either long-
range internal stress (equation (10.55)) or short-range local force (equation
(10.58)) determines the strength. The two effects are comparable in size and
which is the dominant one depends on parameters such as |6| and antiphase
boundary energy for the alloy in question. When the precipitates are large
enough for strong-force conditions to apply (N = 10°), the flow stress given
by equation (10.56) is generally larger than the Orowan stress (equation
(10.59)). Thus, unless coherency is lost at an early stage, further aging results
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in a flow stress controlled by large coherency strains (equation (10.56)). It is
independent of N and corresponds to the optimum heat-treatment. In this
state, a dislocation must first overcome 7; before cutting a precipitate. When
coherency is lost by overaging, a dislocation moves through the obstacles by
bowing between them. The flow stress (equation (10.59)) then decreases
with increasing N. Except in the very earliest stages of aging, the energy bar-
riers offered to dislocation motion by precipitates are generally too large in
comparison with kT for thermal activation to be significant, i.e. AF = Gb’ in
equation (10.10). The flow stress is almost athermal.

It can be seen from Fig. 10.24 that when the spacing of incoherent precipi-
tates is not large in comparison with their size, a correction must be effected
in equation (10.59) by replacing A by (A — D). It is also seen that a disloca-
tion moving through obstacles by the Orowan mechanism leaves a ring of
dislocation around each one. These Orowan loops may affect the stress for
subsequent dislocations by reducing the effective spacing (A — D). The
nature of Orowan loops and the ways in which they are affected by cross
slip are discussed in section 7.5 (Fig. 7.12).

The Orowan stress is also the flow stress for dispersion strengthening, a process
in which incoherent obstacles such as oxide particles are deliberately added
to a softer metal matrix. Examples include thoria-dispersed (TD) nickel
(Ni—ThO,) and sintered aluminum powder (SAP) (Al—Al,O3).

The critical stress and dislocation shape characteristic of the Orowan mecha-
nism can also arise for obstacles that can be cut by dislocations. Figure
2.18(b) shows a dislocation as it breaks away at the critical applied shear
stress from a spherical void in a periodic row of voids in iron at 0 and 300 K.
These images obtained by atomic-scale computer simulation (section 2.4)
show atoms in the dislocation core and on the void surface. The slip plane
(110) is the plane of the image and the Burgers vector b is 3[111]. The dis-
location was initially a straight edge dislocation lying parallel to the [112]
direction and it is seen that the segments pinned at the void surface are
pulled into screw orientation in the critical condition at 0 K. The strong
obstacle resistance in this case arises from two effects: (a) the dislocation
strain and core energy are reduced when it penetrates a void, and (b) the dis-
location has to create a surface step equal to b as it leaves the void. The obsta-
cle strength of the void is seen to decrease with increasing temperature.

10.8 WORK HARDENING

The mechanisms discussed in the preceding sections of this chapter describe
the glide of dislocations in single crystals where the resistance encountered
does not change with increasing plastic strain. They neglect the increase in
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glide resistance that occurs when dislocations move, interact and change
their distribution and density. This results in work hardening, which can often
be exploited to advantage by raising the strength of solids shaped by plastic
deformation. Taylor recognized in the earliest days of dislocation theory that
work-hardening results from the interaction of dislocations. It was postu-
lated that the flow stress 7 is just the stress required to force two edge dislo-
cations on parallel slip planes of spacing ! past each other against their
elastic interaction. Hence, from Fig. 4.14,

7=aGb/l (10.60)

where « is a constant or order 0.1. The line density p of a network of dislo-
cations of spacing I is p ~ 72, With the assumption that each dislocation
moves a distance x before being stopped by a network of other dislocations,
it is seen from equations (3.12) and (10.60) that

12
7'=ozG<;) e" (10.61)

where n is 0.5 in the Taylor theory. Although such a parabolic relation
between stress and strain is a feature of the plastic deformation of many
polycrystalline materials, this is not the case for single crystals, for which
equation (10.61) is derived. Also, it is known that dislocations from sources
do not move as isolated defects but as groups creating slip bands.
Furthermore, from the form of the stress—strain curve, it is known that bar-
riers to dislocation motion are actually created by deformation. The incorpo-
ration of these aspects into a theory which can explain how the dislocation
arrangement changes with increasing plastic strain and predict the flow stress
for a given dislocation state has proved difficult, for many effects are
involved.

It is now established that single crystals of a variety of metallic and non-
metallic crystal structures exhibit three-stage behavior: the stress—strain curve
for a face-centered cubic metal, for example, is shown schematically in
Fig. 10.1(d) and a real example is reproduced in Fig. 10.17(a). The extent of
each stage is a function of the crystallographic orientation of the tensile axis,
the purity of the sample and the temperature of the test. In the body-
centered cubic and prism-slip hexagonal metals, similar behavior (but at
higher stress) is observed at intermediate temperatures, and in the basal-slip
hexagonal metals stage I may extend almost to fracture. In all cases, the rate
of work-hardening (i.e. the slope 6 of the 7 versus ¢ curve in Fig. 10.1(d)) is
low in stage I, typically 6;~10"*G, where G is the shear modulus. This linear
region (often called easy glide) is followed by another, stage II, in which the
slope 0 is much higher, typically 6;; ~ (3—10)6;. In stage 111, dynamic recovery
occurs, the 7 versus e curve is parabolic and 6 decreases with increasing
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FIGURE 10.25
Dislocation sources S, and Sg operate under resolved shear stress 7, and dislocations Ay, As, As ...
interact with By, By, B, ... of opposite sign to form an array of dipoles known as a multipole.

strain. The onset of stage III is promoted by an increase in temperature.
Numerous investigations using transmission electron microscopy and mea-
surement of surface slip steps have shown how dislocation behavior contri-
butes to these stages.

The plastic strain in stage I results from dislocations moving on the slip sys-
tem with the highest resolved shear stress. On this primary system, dislocation
sources operate at the critical resolved shear stress and dislocations move
over large distances (typically between ~ 100 pm and the crystal diameter).
Many tens of dislocations contribute to slip lines observed on the surface.
Electron microscopy of specimens deformed only in stage I reveals edge dis-
location dipoles (see section 4.6). They are formed by the elastic interaction
of dislocations of opposite sign moving in opposite directions from sources
on different (but parallel) slip planes, as shown schematically in Fig. 10.25.
Screw dislocations are seldom seen, because screws of opposite sign attract
each other (section 4.6) and can annihilate by cross slip. The exception to
this occurs in crystals of low stacking-fault energy, for then the constrict-
ion required for cross slip is difficult. Also, in overaged or dispersion-
strengthened alloys (section 10.7), prismatic loops generated by cross slip
(section 7.5) interact with screw dislocations to form helices. An example of
helix formation is shown in Fig 3.23.

Very few dislocations are formed on secondary (i.e. non-primary) slip systems
in stage I, but in stage II there is a considerable increase in multiplication
and movement of secondary dislocations. The onset of this secondary activ-
ity brings stage I to an end. It occurs when the applied load (aided by inter-
nal stress from primary dislocations) and crystal orientation are such that
the critical resolved shear stress on the secondary system is reached. Thus,
the extent of stage I depends on crystal structure and orientation. The densi-
ties of primary and secondary dislocations are approximately equal in stage 1I,
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although the primaries contribute most to the plastic strain. Interactions
between primary and secondary dislocations lead to the formation of bar-
riers to slip (see below), so that although new primary slip lines appear as
strain increases, the slip line length decreases with increasing strain.
Transmission electron microscopy reveals that the density of secondary dis-
locations is highest in regions where the primary density is high, and the
two sets, together with their reaction products, form sheets of dislocations
parallel to the primary planes.

A variety of models has been proposed to explain the value of the flow stress
7 in stage II for a particular dislocation distribution. To this must be added
the lattice and alloying contributions discussed in sections 10.3 and 10.7. In
conformity with equation (10.9), 7 contains a part 7, which is almost tem-
perature-independent, and a part 7*, which is assisted by thermal activation
and is temperature-dependent. 7 arises from mechanisms that are domi-
nated by the elastic stress field and energy of dislocations, and is therefore
proportional to the shear modulus G. It has the form

T¢ *Gb/1 (10.62)

where length [ depends on the controlling mechanism. For example, if 7 is
the stress required to make parallel dislocations of opposite sign pass on par-
allel slip planes of spacing h (Fig. 10.25), as in stage I, then [ = h, as seen by
putting y=h in Fig. 4.14.

When forest dislocations of spacing Ir intersecting the slip plane provide
obstacles to glide, relation (10.62) applies with I=1;, and if the forest
arrangement is random, then l]fz is approximately equal to the density ps of
those dislocations, i.e.

7 Gh, /p; (10.63)

Three contributions to 7 arise. The first is 7¢ and is the stress required to
overcome attractive junctions, as discussed below. The other two contribute
to 7* and are short-range in nature. One is the applied stress required to cre-
ate a jog by forest intersection (section 7.7) and the other the stress necessary
to move a jogged dislocation by vacancy generation (section 7.3). The contri-
bution due to jog creation arises from the energy to form a single jog E;. In
the absence of thermal activation, this is equal to the work done by the
external load when a dislocation segment of length I; under force 7b per unit
length creates a jog and moves forward by b; i.e. E;= 7b’l;. Treating the jog
as a dislocation element of length b, E; is approximately 0.2Gb’ (section
7.2). The stress at T = 0 K is therefore given by

7(0)=10.2 Gb/lf (10.64)
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The stress to create a vacancy by jog climb is given by equation (7.1). Taking
Ef ~ 8kT), (section 1.3), which is typically about 0.1Gb?, the stress becomes

7(0) = 0.1 Gb/I; (10.65)

Thus, both contributions to 7* at T= 0 K have the form

7(0) = aGb, /5y (10.66)

where « is approximately 0.1 to 0.2. Thermal activation decreases 7*, i.e. a,
with increasing temperature. In general, 7 dominates and 7* makes only a
weak contribution to 7 at low homologous temperatures. Exceptions to this
include alloys and body-centered cubic crystals, in which thermally-activated
solid-solution and Peierls-stress effects can lead to 7* being larger than 7 at
low to moderate temperatures.

The mechanisms giving rise to the dominant 7¢ contribution to 7 comes
from attractive interactions between dislocations on different slip systems.
The collinear interaction and reactions that form the Lomer—Cottrell lock,
the Hirth lock and the glissile junction in the face-centered cubic metals
were described in sections 5.6 and 7.6. Their contributions to the critical
stress for slip on any one system can be combined in the form

T =Gb | aipi (10.67)
\/ 7

where 7' is the stress for slip system i, ¢/ the dislocation density in slip sys-
tem j and coefficient a” is a measure of the strength of interaction between
systems i and j. Kubin and co-workers have obtained the magnitudes of the
strength coefficients for the possible interactions by dislocation dynamics
computer simulation (section 2.4) (see Further Reading). The collinear inter-
action (section 7.6) makes by far the strongest contribution (v/a¥ ~ 0.8 com-
pared with 0.2—0.4 for the others). Further understanding of strain
hardening should be gained by using equation (10.67) in models in which
the dislocation density terms change with stress and strain in a manner com-
patible with experiment.

The equations above do not give a work-hardening rate 6, nor do they pre-
dict the form of the dislocation arrangement. There is, as yet, no completely
statisfactory theory of stage I. Most models have considered the applied
stress 7 for one dislocation to pass other, parallel dislocations in dipole/
multipole configurations, which, as explained above, are characteristic of
this stage. Unfortunately, multipoles are probably very mobile unless they
contain exactly equal numbers of dislocations of opposite sign, so that it is
necessary to invoke some (unexplained) trapping mechanism for multipoles
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to predict the observed 6. It is possible that forest dislocations play a role
here. In stage I, the long-range internal stress field from dislocations in
dipole pairs is weak and 6 correspondingly small. In stage II, secondary slip
leads to strong obstacles and pile-ups of primary dislocations. The large
internal stress that results from these leads to further secondary slip and the
formation of stable dislocation boundaries with long-range stress fields. New
dislocations are generated in relatively soft regions of the crystal, before
being blocked themselves. The slip line length therefore decreases with
increasing strain and 7 increases rapidly. Again, however, there is no
completely satisfactory theory which accounts quantitatively for the net con-
tributions from the forest and primary dislocations.

Stage II ceases and stage III begins when dislocations leave their original slip
planes. Except for high temperatures at which edge dislocations can climb,
this occurs by the cross slip of screw dislocations, as confirmed by cross-slip
traces seen by surface examination. The attraction and annihilation of screws
of opposite sign leads to a reduction in dislocation density (and internal
stress) in stage III, and the edge dislocations rearrange to form low-angle
boundaries. This change of structure is promoted by the applied stress and is
thus known as dynamic recovery. Since cross slip is hindered by low stack-
ing-fault energy (section 5.3) and assisted by thermal vibrations, stage III
dominates the stress—strain curve for high stacking-fault energy crystals at
moderate to high temperatures, as illustrated by the dashed curve in
Fig. 10.1(d). The stress at which stage III starts decreases exponentially with
increasing temperature and stacking-fault energy.

It is clear that analytical theory alone has not explained all the features of
work hardening and that answers to some questions are coming from com-
puter simulation of the behavior of dislocation arrangements that mimic
those in real crystals. In addition to the detailed studies of junction reactions
such as those referred to above, the motion and interaction of many disloca-
tions can be modeled in the continuum approximation by the method of
dislocation dynamics (section 2.4). An example of the change in dislocation
arrangement found by simulation of a molybdenum single crystal
10 X 10 X 10 pum® was shown in Fig. 2.20. The corresponding curves for
applied stress and dislocation density versus strain are plotted in Fig. 10.26.
The stress was calculated from Young's modulus for molybdenum times the
elastic strain, and the latter was obtained by subtracting the plastic strain,
computed from the motion of the dislocation segments (equation (3.12)),
from the total strain. The stress—strain plot has the form described earlier for
a ductile metal, i.e. the deformation is mainly elastic for small strains and
plastic after yielding. The model exhibits work hardening with a rate (dr/de)
of approximately 6 GPa. The yield drop seen in Fig. 10.26(a) reflects the
choice for the initial arrangement of dislocations aligned preferentially along
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10.9 Deformation of Polycrystals a
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FIGURE 10.26

(a) Stress versus strain curve and (b) dislocation density versus strain for the dislocation dynamics simulation of single crystal
molybdenum described in section 2.4 (Fig. 2.20). (From Bulatov and Cai (2006), Computer Simulations of Dislocations, Oxford
University Press. With permission from Oxford University Press (www.oup.co.uk).)

screw orientations and a dislocation mobility law with a high drag coeffi-
cient for screws. As explained in section 10.5, a stress drop is associated with
a rapid increase in density of mobile dislocations at yield.

10.9 DEFORMATION OF POLYCRYSTALS

There are important differences between plastic deformation in single-crystal
and polycrystalline materials. In the latter, the individual crystals have differ-
ent orientations, and the applied resolved shear stress for slip (equation
(3.1)) varies from grain to grain. A few grains yield first, followed progres-
sively by the others. The grain boundaries, being regions of considerable
atomic misfit, act as strong barriers to dislocation motion, so that unless the
average grain size is large, stage I easy-glide exhibited by single crystals does
not occur in polycrystals. The stress—strain curve is therefore not simply a
single-crystal curve averaged over random orientations. Furthermore, the
internal stresses around piled-up groups of dislocations at the boundaries of
grains that have yielded may cause dislocation sources in neighboring grains
to operate. Thus, the macroscopic yield stress at which all grains yield depends
on grain size. Finally, a grain in a polycrystal is not free to deform plastically
as though it were a single crystal, for it must remain in contact with, and
accommodate the shape changes of, its neighbors. An inability to meet this
condition leads to a small strain to failure, as typified by Fig. 10.1(b).

Considering the last point first, it is seen from section 4.2 that when volume
remains constant, as it does during plastic deformation of crystals, a general
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elastic shape change is fully specified by five independent components of
strain. Extending this to the ability to undergo general plastic shape changes,
five independent slip systems must be able to operate, a result known as the
von Mises condition. An independent system produces a shape change which
cannot be obtained by combinations of other systems. In the face-centered
cubic metals, the twelve (110){111} slip systems provide five independent
systems and satisfy the condition. So, too, do the slip systems in body-
centered cubic metals. In other structures (see Chapter 6) there are often
insufficient systems, except at high temperature. For example, hexagonal
metals in which basal slip is strongly preferred have only three slip systems
of which two are independent — neglecting any contribution from deforma-
tion twinning — and show little ductility at low temperatures.

Equation (3.1) shows that the tensile yield stress o, and the critical resolved
shear stress 7, for a single crystal which slips on one plane in one direction
are related by the Schmid factor (cos ¢ cos A). It may be rewritten

oy =mT, (10.68)

For polycrystals in which the grains have random orientations, this may be
generalized to

oy =M, (10.69)

where M is known as the Taylor factor. By averaging the stress over the grains
and considering the most-favored slip systems, it has been shown that M ~3
for the face-centered and body-centered cubic metals.

From experimental measurement of the yield stress of polycrystalline aggre-
gates in which grain size d is the only material variable, it has been found
that the Hall—Petch relationship is satisfied:

o, =00+ kd™" (10.70)

where exponent n is approximately 0.5, k, is a material constant and o, is a
constant stress of uncertain origin. The flow stress beyond yield follows a
similar form. Hence, at cold-working temperatures, where grain boundaries
do not contribute to creep, high yield and flow stresses are favored by small
grain size. One rationalization of equation (10.70) is that a pile-up at a grain
boundary in one grain can generate sufficiently large stresses to operate dis-
location sources in an adjacent grain at the yield stress. For example, the
stress 7, on the leading dislocation generated by source S; in grain 1 under
resolved shear stress 7 (Fig. 10.27) is seen from equations (9.27) and (9.28)
to be
d_,

T= o (10.71)
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10.10 Dislocations and Fracture a

where A ~ Gb/2x. If it is assumed that source S, in

grain 2 operates when 7, reaches a critical value 7§,  _ T
then
oy =hkd '/? (10.72)
- R

where k, is m(AT*{)l/ 2, and m converts resolved shear
stress to tensile stress. The Hall—Petch relationship
follows by assuming the dislocations from S,
encounter a friction stress or internal back-stress o. T
Although such a pile-up model was first used to
explain the relationship, other interpretations, such

as that based on grain-boundary dislocations (Li and FIGURE 10.27
Chou, 1970), are possible. Schematic illustration of a

Grain 1 Grain 2

pile-up formed in grain 1
under an applied resolved
shear stress 7. Sy is a
source in grain 2. The
trace of the preferred slip
plane in each grain is
marked by a dashed line.

Equation (10.70) predicts that high values of yield stress can be obtained if
metals can be processed to have d less than about 100 nm. Although experi-
ments on such nanograined materials have shown that o, values exceeding
1 GPa can be achieved, the Hall—Petch relationship breaks down in many
cases, i.e. 0, no longer increases with decreasing d and may actually decrease.
This is believed to be due to the fact that the stress to operate Frank—Read
sources within nanograins would be very high and could not be reached
before other processes result in deformation. These might involve grain
boundary sliding, grain boundary migration or dislocation generation in
boundaries. There is as yet no comprehensive model of plasticity of nano-
grain materials (see Further Reading).

10.10 DISLOCATIONS AND FRACTURE

Surface irregularities and cracks are particularly potent sources of disloca-
tions in solids under stress. Indeed, the generation of dislocations in the
vicinity of crack tips plays a vital role in determining whether material exhi-
bits brittle or ductile behavior when fracture occurs, i.e. whether crack propa-
gation is preceded by significant dislocation emission at the crack tip or not.
In ductile metals, yielding at the tip of a crack can blunt it and crack propa-
gation is accompanied by extensive plastic flow. However, many materials,
e.g. ceramics, semiconductors and refractory metals, exhibit a brittle-to-ductile
transition as their temperature is raised. Some, such as silicon, show a very
sharp transition over a narrow temperature range, but most do not and their
transition is soft, occurring over a wide temperature range of typically
50—100°. Dislocations influence the behavior by affecting the stress field
near the crack tip before cleavage occurs. Experiments show that dislocations
glide and multiply near the crack tip over the temperature range of the
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transition. A soft transition is assisted by a high density of available disloca-
tion sources along the crack front.

To a first approximation, if material under an applied tensile stress o
contains a crack of length ¢ perpendicular to the stress axis, the stress field
near the tip of the crack is proportional to o+/c and is magnified strongly in
the tip region. For sharp cracks it is convenient to use the stress intensity factor
K to describe the stress around the crack:

K = ao+/mc (10.73)

where « is a constant approximately equal to 1. The stress field near the
crack tip varies as K/4/r, where 7 is the distance from the tip. Local fracture
occurs when K reaches a critical value Kj;,. corresponding to there being suf-
ficient strain energy in the crack tip stress field to create new fracture sur-
faces. For a given crack length, the fracture stress and Kj,. are given by
equation (10.73).

Dislocation activity near the tip of a crack can shield the tip from the full
effects of the applied stress and result in a local stress intensity factor at the
crack tip, K;;, that is lower than that given by equation (10.73), i.e.

Ktip =K — Ky (10.74)

where K arises from crack-tip shielding. With no dislocation activity to
shield the crack, as in ideally brittle materials, fracture occurs when Kiip
equals the critical value K, as given by the Griffith theory for pure cleavage,
i.e. Kpae =K. With limited dislocation activity, fracture can still occur but
only when K. > K. When extensive dislocation occurs, Kj;; may be suffi-
ciently large that Ky, given by equation (10.74) does not reach the value for
fracture and the material will be ductile.

The length scale of the shielding process is of the order of um and too large
for simulation by atomic-scale computer modeling. Although this method
has been applied to study dislocation nucleation at the crack tip itself, e.g. at
ledges, evidence points to the difficulty of actually creating sufficient disloca-
tions in this way to provide significant shielding. The models that have been
developed to explain the role of dislocations in the transition from brittle to
ductile behavior assume that the dislocation sources near the crack tip pre-
exist. The models employ elasticity theory to calculate the stress field of
many moving dislocations. The simplest, i.e. two-dimensional, approach to
model the effect of dislocations emitted from a source near a crack tip under
an applied stress is illustrated schematically in Fig. 10.28. The first disloca-
tion labeled 1 is emitted by the source when K is well below K. and will be
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able to move away from the crack tip if the force it
experiences due to the crack stress field is suffi-
cient: this should include, for example, the image
stress component (section 4.8) due to the crack
surface. The sign of dislocation 1 is such that its
stress field reduces the stress at the source and so l

the applied K will have to be increased to allow

dislocation 2 to be emitted and glide away. Dislocation 2 adds to the back
stress at the source and K will have to increase again for dislocation 3 to be
emitted, and so on for subsequent dislocations. As a result of the shielding
effect of the emitted dislocations, the applied stress intensity K at fracture
will be greater than K.

Applied K

The dynamics of the situation depend on the rate of increase of applied load
and the time the shielding dislocations remain in the vicinity of the crack
before gliding away. The latter can be studied in the framework of disloca-
tion dynamics by simulating dislocation movement using a realistic depen-
dence of dislocation velocity on the local stress and temperature. Two- and
three-dimensional models of this sort provide a good description of the rise
in K during the fracture transition of simple materials. A comparison of
model and experimental results for single crystal tungsten is plotted in
Fig. 10.29 for five different values of the applied strain rate.
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FIGURE 10.29

Fracture toughness versus temperature obtained by experiment and modeling for single crystal
tungsten at five applied strain rates. The vertical dotted lines indicate the experimental transition
temperatures. (From Fig. 4 of Tarleton and Roberts, Phil. Mag., 89, 2759, 2009. With permission from
Taylor and Francis Ltd (htto://www.informaworld.com).)

www.lran-mavad.com

dlgo Gumrigo g ghgauish gap

/, )
2 y}q Slip plane
vy 2

Crack  ’\
Source

FIGURE 10.28
Schematic illustration of
the generation of shielding
dislocations from a source
just ahead of a crack.



m CHAPTER 10: Strength of Crystalline Solids

FURTHER READING

Argon A: Strengthening mechanisms in crystal plasticity, 2007, Oxford University Press.
Ashby MF, Jones DRH: Engineering materials, ed 3, vols 1 and 2, 2005, Butterworth-Heinemann.

Bacon DJ, Osetsky YN, Rodney D: Dislocation—obstacle interactions at the atomic level.
In Hirth JP, Kubin L, editors: Dislocations in solids, vol 15, 2009, North-Holland, p. 1.

Basinski SJ, Basinski ZS: Plastic deformation and work hardening. In Nabarro FRN, editor:
Dislocations in solids, vol 4, 1979, North-Holland, p. 261.

Brown LM, Ham RK: Dislocation-particle interactions. In Kelly A, Nicholson RB, editors:
Strengthening methods in crystals, 1971, Elsevier, p. 12.

Cherkaoui M, Capolungo L: Atomistic and continuum modeling of nanocrystalline materials:
Deformation mechanisms and scale transition, 2009, Springer.

Christian JW: The theory of transformations in metals and alloys (part I and II), ed 3, 2002,
Pergamon.

Cottrell AH, Bilby BA: Dislocation theory of yielding and strain ageing in iron, Proc Phys Soc
A62:49, 1949.

Edington JW, Melton KN, Cutler CP: Superplasticity, Prog Mater Sci 21:61, 1976.
Eshelby JD: The continuum theory of lattice defects, Solid State Phys 3:79, 1956.

Eshelby JD: Determination of the elastic field of an ellipsoidal inclusion, Proc Roy Soc A241:376,
1957.

Friedel J: Dislocations, 1964, Pergamon.

Gerold V: Precipitation hardening. In Nabarro FRN, editor: Dislocations in solids, vol 4, 1979,
North-Holland, p. 219.

Gifkins RC, editor: Strength of metals and alloys, 3 vols, 1983, Pergamon.

Haasen P: Solution hardening in fcc. metals. In Nabarro FRN, editor: Dislocations in solids, vol 4,
1979, North-Holland, p. 155.

Hertzberg RW: Deformation and fracture mechanics of engineering materials, 1996, John Wiley.

Hirsch PB: Work hardening. In Hirsch PB, editor: The physics of metals: 2 defects, 1975,
Cambridge University Press, p. 189.

Hirth JP, Lothe J: Theory of dislocations, 1982, Wiley.

Johnston WG: Yield points and delay times in single crystals, ] Appl Phys 33:2716, 1962.

Kelly A, Groves GW, Kidd P: Crystallography and crystal defects, 2000, John Wiley.

Kocks UF, Argon AS, Ashby MF: Thermodynamics and kinetics of slip, Prog Mater Sci 19:1, 1975.

Kubin L, Devincre B, Hoc T: The deformation stage II of face-centered cubic crystals: Fifty years
of investigations, Int ] Mat Res 100:10, 2009.

Li JCM, Chou YT: The role of dislocations in the flow stress grain size relationship, Met Trans
1:1145, 1970.

Martin JW: Precipitation hardening, ed 2, 1998, Butterworth-Heinemann.
Nabarro FRN: The theory of crystal dislocations, 1967, Oxford University Press.

Nabarro FRN: Solution and precipitation hardening. In Hirsh PB, editor: The physics of metals: 2
defects, 1975, Cambridge University Press, p. 152.

Nabarro FRN, Duesbery MS: Various Chapters in ‘Work Hardening’, Dislocations in solids, vol 11,
2002, North-Holland.

Nowick AS, Berry BS: Anelastic relaxation in crystalline solids, 1972, Academic Press.

www.lran-mavad.com

dlgo Gunrigo g ghgauisils gajo



Pande CS, Cooper KP: Nanomechanics of Hall—Petch relationship in nanocrystalline materials,
Prog Mater Sci 54:689, 2009.

Ritchie IG, Fantozzi G: Internal friction due to the intrinsic properties of dislocations.
In Nabarro FRN, editor: Dislocations in solids, vol 9, 1992, North-Holland. chap. 45

Saada G, Dirras G: Mechanical properties of nanograined metallic polycrystals. In Hirth JP,
Kubin L, editors: Dislocations in solids, vol 15, 2009, North-Holland, p. 199.

Smith E: Dislocations and cracks. In Nabarro FRN, editor: Dislocations in solids, vol 4, 1979,
North-Holland, p. 363.

Van Swygenhoven H, Derlet PM: Atomistic simulations of dislocations in FCC metallic nano-
crystalline materials. In Hirth JP, editor: Dislocations in solids, vol 14, 2008, North-Holland,
p- 1.

Vitek V, Paidar V: Non-planar dislocation cores: A ubiquitous phenomenon affecting mechanical
properties of crystalline materials. In Hirth JP, editor: Dislocations in solids, vol 14, 2008,
North-Holland, p. 439.

Was GS: Fundamentals of Radiation Materials Science, 2007, Springer.

Xu G: Dislocation nucleation from crack tips and brittle to ductile transitions in cleavage fracture.
In Nabarro FRN, Hirth JP, editors: Dislocations in solids, vol 12, 2004, North-Holland, p. 81.

www.lran-mavad.com

dlgo Guwrigo g (hgauisils gajo

Further Reading a



This page intentionally left blank

www.lran-mavad.com

dgo umnigo g Ghgauisih zapo



The SI System of Units

Base-units
metre (M) — length
kilogram (kg) — mass
second (s) — time
ampere (A) — electric current
kelvin (K) — thermodynamic temperature
candela (cd) — luminous intensity

Some derived units

Name of Sl unit S| base-units

frequency hertz (Hz) 1Hz=1s""
force newton (N) 1IN=1kgms™2
work, energy joule (J) 1J=1Nm

Multiplication factors

Prefix Symbol

102 tera T
10° giga G
10° mega M
10° kilo k
1078 mill m
107° micro i
107° nano n
1072 pico P
10718 femto f

107"®  atto a

Some useful conversions

1 angstrom = 10"""m =100 pm or 0.1 nm

1 kof =9.8067 N
9 251
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ﬁ The SI System of Units

-4 4 4 4 4 4 4 4 4 4 4 A 4

dyne cm™
dynecm™2=0.1Nm™2

=101.33kNm~2
=133.32Nm2
=0.1 MNm™2
=10"°N

T=1mNm~

1

=4.1868 J
=10""J=0.1pJ
=imdm?2=1mNm"~
=25.4mm

=0.4536 kg
=4.4482N

=6.895 kN m™2
=175Nm™’
=16%x10""°J=0.16aJ

2 1
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Index

A

Ab initio calculations, 34—5, 112,
114, 121

Activation energy, 208

Activation volume, 208

Admissible defects, 186—9

Aging, 222, 233-7

Alloy strength, 232—7

Anion vacancies, 10

Antiphase boundaries (APB), 127,
128

Asymmetry of slip, 119

Athermal activation, 209

Atmosphere, Cottrell, 220

Atom probe tomography, 33—4

Atomic planes, 15

Atomic-scale simulation, 21, 34—8,
119-20

Attractive junctions, 149—53

B

Bardeen—Herring source, 167—8
Basal planes, 109—10, 115, 117
Basal slip, 112—14
bcc see Body-centered cubic metals
Bicrystals, 187—9, 200
Body-centered cubic metals (bcc), 5,
118—-24
octahedral interstitials, 219
twinning, 196, 197
work hardening, 238
Bond reconstruction in the core,
132-3
Boundaries
dislocations, 175—7
movement of, 193—202
Bragg's law, 22—3
Bright field images, 23
Brittle materials, 205

Brittle-to-ductile transitions, 245
Bubble models, 12

Bulk modulus, 66

Burgers circuit, 16—19, 87
Burgers vector, 16—19, 26, 94

C

Cation vacancies, 10
Channeling of dislocations, 228
Chemical forces, 80
Chemical interaction, 220
Circuit mapping, 189-91
Circular edge loops, 98
Circular shear loops, 98
Cleavage, 246
Climb, 53—6
conservative, 59
experimental observation, 56—9
forces, 79—81
jogs, 241
multiplication by, 167—8
rate of, 80—1
Close-packed hexagonal structures
see Hexagonal metals
Coherent interfaces, 191
Coincident site lattice (CSL), 188
Cold work, 171
Collinear reactions, 150, 152, 241
Column approximations, 23
Commensurate interfaces, 191
Composition planes, 12
Compression, 66
Computer simulation, 21-2, 34—41,
119-20, 199, 214
Conservative climb, 59
Conservative motion, 43, 195—9
Constriction of extended dislocation,
91-3
Continuum-level simulation, 38—40
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Cores
bond reconstruction, 132—3
disregistry, 120—1
energy of, 72
radius, 69
structure of, 119—21, 210—13
Cottrell atmosphere, 220
Covalent crystals, 130—3, 220
cph see Hexagonal metals
Crack, 245-8
Critical resolved shear stress (CRSS),
127, 206
Critical shear stress for slip, 13—14
Cross slip, 48—-50, 913, 106, 242
Crowdion interstitials, 123
CRSS (critical resolved shear stress),
127, 206
Crystalline solids
boundaries, 171—-204
strength of, 205—49
Crystals
atom positions, 1
defects in, 8—13
grain boundaries, 12
growth rates, 14
point defects, 8—10
stacking faults, 10—11
structure, 1-8, 20, 135—6
twin boundaries, 12—13
volume defects, 13
CSL (coincident site lattice), 188
Cubic crystals, 3, 4

D

D-Shockley partial, 98
Dangling bonds, 132

Dark field images, 23, 27
Debris, 144

Decoration methods, 30—1
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Defects, admissible, 186—9
Deformation
experimental observation, 198
plastic, 171-5, 205
polycrystals, 243—5
twinning, 12—13, 122, 195-9
Degenerate cores, 120—1
Degrees of freedom, 174, 175
Diamond-cubic structures, 131
Dichromatic patterns, 188, 196
Diffraction mode, 23
Diffuse forces, 229—-30, 235
Diffusion-assisted motion, interfacial
defects, 199—201
Dilatation, 65
Dipoles, 79, 143—4, 145
Disconnections, 188
Discrete dislocation dynamics, 38—40
Dislocation(s), 13—19, 161, 162—-3
arrays, 171-204
body-centered cubic metals,
118—-24
boundaries, 175—7
Burgers circuit, 16—19
Burgers vector, 16—19
channeling, 228
cores, 69, 72, 119-21, 132-3,
210—-13
covalent crystals, 130—3, 220
definition, 16
density, 19, 157
dipoles, 143—4
dissociation, 91, 103
dynamics simulation, 21-2,
38—-40
elastic energy, 122, 185
elastic properties, 63—83
energy, 116, 122, 157, 185, 213
entropy, 157
epitaxial interfaces, 191—3
extended, 90, 91, 147—9
face-centered cubic structures,
85—107
forces between, 75—9
forces on, 73—5
fracture, 245—8
in freshly grown crystals, 158—9
geometry of, 15—16
glide set, 132
hexagonal close-packed metals,
109—18
imperfect, 110
interfacial, 186—93
intersections, 137—9, 155

ionic crystals, 124—6, 219
jogs, 137—55
in layer structures, 133—4
locking, 99—102, 220—4
loops, 56—7, 97—8, 1224,
144-—-7
misfits, 158, 1923
mixed, 24—5, 49, 70, 72—-3
movement of, 43—62, 139—42
multiplication of, 157—69
network, 177
nodes, 19, 58
nucleation, 99, 158, 159—63, 215
observations, 21—41
origin of, 157—69
partial, 85—7, 99—102, 134
perfect, 18, 85, 94, 110, 122, 131
pile-ups, 203—4, 245
plastic strain, 59—61
point defect interactions, 8—10,
20, 216-20
polymer crystals, 134—5
screw, 15—16, 24, 29, 67-9,
105—-6, 113—14, 119
sessile, 95, 96, 100, 101
slip, 45—6
spiral, 57—-9
strain energy, 67, 71-3, 184—6
stress fields, 67—70, 174, 176—7,
181—-4
superlattices, 126—30
superpartial, 128—30
velocity, 50—3, 210
walls, 183—4
see also Edge dislocations
Dispersion strengthening, 237
Displacement damage, 28
Displacement difference, 210—12
Displacive transformation, 201—2
Disregistry in the core, 120—1,210—12
Dissociation, 91, 103, 114, 212
Double cross slip, 49, 144
Double-kink nucleation, 215
Drag coefficient, 52
Ductile materials, 205
Dynamic recovery, 238—9
Dynamic strain aging, 222

E

EAM (Embedded Atom Model), 36
Easy glide, 238
Edge dislocations, 15, 16, 69—70,
113, 114, 124—6
atom positions, 92, 212
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Burgers vector, 17, 212
climb, 53, 61
disregistry, 212
formation, 45
intersections, 137—9
jogs, 55, 140
movement, 46
negative climb, 53
pile-ups, 203
plastic deformation, 48
plastic displacement, 60
plastic strain, 61
positive and negative climb, 53
stable positions, 79
stress fields, 182, 183
velocity of, 51, 53
Effective charge, 124—6
Effective pressure, 70
Elastic energy, 122, 185
Elastic interactions, 218—19, 221
Elastic properties of dislocations,
63—-83
Elasticity theory, 63—7, 122
Electrical interactions, 219
Flectron microscopy, 22—8
dislocations, 24—5
image simulation, 26—8, 29
lattice imaging, 26
limiting factors, 28
planar defects, 25—6, 27, 28
principles, 22—4
Elementary jogs, 125, 139—42
Embedded Atom Model (EAM), 36
Entropy of dislocations, 157
Epitaxial interfaces, 191—3
Equilibrium concentration of defects,
9
Escaig stress, 92
Eshelby twist, 68—9
Etch-pit studies, 29—30, 31, 32, 33
Extended dislocations and jogs, 90,
91, 147-9
Extended stacking-fault nodes,
153—4
External stress, 63
Extrinsic point defects, 9
Extrinsic stacking faults, 11, 95, 111

F

Face-centered cubic structures (fcc),
5—6, 85—-107, 112
boundaries, 180
stacking faults, 11
work hardening, 238



Field evaporation, 32

Field ion microscopy, 32—3

Flow stress, 207—10, 228—32, 235
Forces between dislocations, 75—9
Forces on dislocations, 73—5
Forest dislocations, 137, 240
Fracture, 245—8

Frank net, 19

Frank partial dislocations, 94—9, 104
Frank—Read sources, 163—6, 245
Frank’s formula, 177—8, 179
Frank’s rule, 73, 76, 89

Free energy, 208

Frenkel defects, 10

Friction coefficient, 52

Friedel relation, 231

G

Gamma surface, 88
General low-angle boundaries,
177-81

General tilt boundaries, 175

Geometrical models, 15—16, 112

Geometrically necessary dislocations,

173

Geometry of dislocations, 15—16

Glide, 43, 195-9

Glide bands, 166—7

Glide cylinder or prism, 56

Glide force, 39, 74

Glide planes, 54, 56, 195

Glide set dislocations, 132

Glide system, 126

Glissile loops, 118

Glissile reactions, 150, 151

Grain boundaries, 12, 33, 36
energy, 185—6
further reading, 20, 204
interfacial defect motion, 201
large-angle, 172
sources, 169

Grain growth, 172

Growth rates, crystals, 14

H

Habit planes, 196, 202
Hall—Petch relationship,
244, 245
Hard sphere model of atoms, 4,
6—7,10-11, 110—-11
hcp see Hexagonal metals
Helical dislocations, 57—9
Hexagonal crystals, indices, 7—8

Hexagonal metals, 6, 7, 109—18,
180—1
slip systems, 244
work hardening, 238
Hirsch mechanism, 146
Hirth lock, 100
Homogeneous nucleation of
dislocations, 159—60
Hooke's law, 66

I

Image forces, 81—2
Image simulation, 26—8, 29
Imperfect dislocations, 110
Impurity atoms, 9, 10, 31
Inhomogeneity interactions, 219
Interfaces, 186—93
defects, 189—91, 199—-201
glide, 1959

line defect identification, 189—91

Internal stress, 63
Interphase boundaries, 199, 201

Intersection of dislocations, 137—9,

155
Interstitials
defects, 8—9, 10
jogs, 55, 140, 141-2
loops, 97, 115—18, 123
octahedral, 218—19
Intrinsic point defects, 8—9
Intrinsic stacking faults, 11, 88, 95,
116
Ionic crystals, 124—6, 219
Irradiation hardening, 227

J

Jog lines, 104
Jogs, 54—5, 125, 137-55
climb, 241
diffusion, 56
electrical charge, 219-20
elementary, 125, 139—-42
energy, 240
prismatic loops, 144—7
Junctions, 149—-53

Kear—Wilsdorf lock, 130

Kink pair nucleation, 215
Kinks, 54, 55, 125, 214—16

L

Large-angle boundaries, 172, 175
Lattice imaging, 26
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Lattice resistance, 210—16

Lattice structures, 15

Lattice translation vectors, 18

Layer structures, 133—4

Left-handed screw dislocations, 15,
16, 47

Line defects in interfaces, 186—9

Line dislocation dynamics, 38—40

Line tension, 74—5, 80, 229—-30

Linear elasticity, 63—4

Localized forces, 230—2, 235

Locking, 99—102, 220—4

Lomer—Cottrell lock, 101, 102

Lomer dislocations, 100

Lomer lock, 99, 101

Long jogs, 142—4

Long-range stress fields, 174, 176—7,
183

Loops, 97—-8, 122—4, 144-7

formation, 162—3
prismatic, 56—7

Low-angle boundaries, 1715,
177—-81, 193—-4

Liiders band, 206

M

Martensite, 201—2

Microplasticity, 205

‘Microwhiskers’, 14

Migration energy, 9

Miller—Bravais indices, 7—8, 110

Miller indices, 1-3, 4, 7

Misfit dislocations, 158, 192—3

Misfit parameter, 217

Misfit volume, 217

Mixed dislocations, 24—5, 49, 70,
72-3

Mobile dislocations, 226—7

Molecular dynamics, 35, 36—8

Molecular statics, 35, 36

Motif units, 1

Movement of boundaries, 193—202

Movement of dislocations, 43—62,
139—-42

Multi-junctions, 153

Multiple cross glide, 166—7

Multiplication of dislocations,
157—69

Multipoles, 239, 241-2

N

Nanograins, 245
Nanowires, 68—9
Negative climb, 54, 80



Negative edge dislocations, 16
Network of dislocations, 177
Nodes, 19, 58

density, 39

dimension, 154

extended, 153—4

forces on, 39
Non-basal slip, 114—15
Non-degenerate cores, 120—1
Normal strains, 64
Nucleation

of dislocations, 99, 158, 159—63,

215
precipitates, 233

(0]

Observations of dislocations, 21—41
Octahedral interstitials, 218—19
Optical methods, 31

Ordered alloys, 127

Origin of dislocations, 157—69
Orowan equation, 59

Orowan mechanism, 146, 236, 237
Overageing, 235, 236, 237

P

Parallel edge dislocations, 75—8

Parallel screw dislocations, 79

Partial dislocations, 85—7, 99—102,
134

Peierls energy, 213—14, 215

Peierls—Nabarro stress, 46, 210—16

Perfect dislocations, 18, 85, 94, 110,
122, 131

Phonons, 52

Pile-ups, 203—4, 245

Pipe diffusion, 55—6, 59

Planar defects, 10—11, 25—6, 27, 28

Plane strain, 70

Plastic deformation, 171—5, 205

Plastic strain, 59—61

Point defects, 8—10, 20, 216—20

Poisson’s ratio, 66

Polarized cores, 120—1

Polycrystalline materials, 114, 206,
243-5

Polygonization, 172

Polymer crystals, 134—5

Portevin—Le Chatelier effect, 222

Positive climb, 53, 54

Positive edge dislocations, 15, 16, 47

Precipitates, 31, 37, 116, 117, 232—3

nucleation, 233
strengthening, 235—7

Primary dislocations, 239—40, 242

Prism planes, 109—10, 112, 113,
114

Prism slip, 113, 238

Prismatic dislocation loops, 56—7,
97-8, 116, 117, 1447,
161-3, 239—-40

Proof stress, 205

Pyramidal planes, 110

Q

Quenching, 104

R

Radiation damage, 227

Random arrays, 228—32

Ray diagrams, 22

Read—Shockley formula, 185, 186

Reconstruction in the core, 132—3

Recovery, 171-5

Recrystallization, 171-5

Regenerative multiplication, 163—8

Repulsive junctions, 149—53

Right-handed screw dislocations, 15,
16, 47, 59, 139

Rocksalt structure, 124

S

S-Shockley partial, 98
Schmid factor, 45
Schottky defects, 10
Screw dislocations, 15—16, 24, 29,
67-9, 105—6, 113—14, 119
atom positions, 47
Burgers vector, 17
cross slip, 242
effective charge, 126
face-centered cubic structures, 91
glide, 121
jogs, 55, 140—3, 149
kinks, 55
movement, 47
plastic deformation, 48
velocity of, 51
Secondary dislocations, 239—40, 242
Seed crystals, 158
Self-interstitial atoms, 8—9, 10, 57
Sessile dislocations, 95, 96, 100, 101
Sessile jogs, 149
Shear loops, 146
Shear modulus, 66
Shear strains, 64
Shear stress, 65—6, 82
Shielding dislocations, 246—7
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Shockley partials, 85—7, 92, 94, 96
equilibrium spacing, 154
face-centered cubic metals, 104
superlattices, 129, 130, 132

Shuffle set dislocations, 132

Silcox—Hirsch mechanism, 104, 105

Simple cubic structures, 4—5, 15

Simulation methods, 21—-2, 34—40,

199

Single surface helicoids, 16

Size effect interactions, 218

Slip
asymmetry, 119
concept of, 43—5
dislocations, 45—6

Slip bands, 44

Slip planes, 43, 44, 46—8, 164

Slip steps, 164

Slip systems, 239—40, 244

Sodium chloride structure, 10

Solubility limit, 232

Solute atmospheres, 220—8

Solute segregation, 221

Solution strengthening, 233—5

Solution treatment, 232

Space lattice, 1, 2

Spiral dislocations, 57—9

Stacking-fault nodes, 153—4

Stacking-fault tetrahedron, 103—6

Stacking faults, 10—11, 30, 90,

109—-12
energy, 11, 88
Frank partial dislocations, 94—9
shrinkage of, 57

Stacking sequence, 4, 5—6

Stair-rod dislocations, 102—3

Stored energy, 171

Strain aging, 222

Strain energy, 67, 71—-3, 184—6

Strain hardening, 99, 205, 237—43

Strain rate, 207—10

Strength of crystalline solids,

205—-49

Stress, definition, 65

Stress concentration, 160—3

Stress fields, 67—70, 174, 176-7,

181—-4
Stress intensity factor, 246
Stress—strain curves, 205—7, 222,
225—06, 228, 238, 243

Strong forces, 229, 232

Substitutional defects, 9, 10

Superjogs, 142—4, 146

Superlattices, 126—30



Superpartial dislocations, 128—30

Supersaturation, 159, 232

Surface methods, 28—30

Suzuki effect, 220

Symmetrical tilt boundaries, 174,
175, 194-5

T

Tangles of dislocations, 171

Taylor factor, 244

TEM see Transmission electron
microscopy

Temperature, flow stress, 207—10

Tensile tests, 224—5

Thermal activation, 209—10

Thermal etching, 29

Thermal jogs, 55

Thin foil samples, 28

Thompson tetrahedron, 93—4, 103,
105

Tilt boundaries, 174, 175, 177, 190,
194-5

Transformations, 201—2

Transmission electron microscopy
(TEM), 22—8, 198

dislocations, 24—5

image simulation, 26—8, 29
lattice imaging, 26
limiting factors, 28
planar defects, 25—6, 27, 28
principles, 22—4
Triangular Frank loops, 106
Twin boundaries, 12—13, 20
Twinning dislocations, 115, 122,
195-9
Twist boundaries, 176, 177, 180
Two-beam approximations, 23

U

Unfaulting reactions, 98
Unit cells, 1, 2, 4, 5, 6
Unit dislocations, 18, 86
Unit edge dislocations, 86
Unit jogs, 125, 139—-42

\'

Vacancies, 8—9, 10
energy, 80
jogs, 140
loops, 29, 115—18, 145
supersaturation, 159
Velocity of dislocations, 50—3, 210
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Visualization, 35

Volterra dislocations, 45
Volume defects, 13

Von Mises condition, 244

W

Wall dislocations, 183—4

Weak beam technique, 25, 27
Weak forces, 229, 231

Whiskers, 14

Work hardening, 99, 205, 237—43

X

X-ray diffraction topography, 31-2,
35

Y

Yield, 210, 220-8

Yield drop, 224—7, 2423
Yield stress, 127, 205, 224, 234
Yield stress anomaly, 127
Young's modulus, 66

Z

Zonal twinning dislocations, 115
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